Cargando…
Identifying key genes for diabetic kidney disease by bioinformatics analysis
BACKGROUND: There are no reliable molecular targets for early diagnosis and effective treatment in the clinical management of diabetic kidney disease (DKD). To identify novel gene factors underlying the progression of DKD. METHODS: The public transcriptomic datasets of the alloxan-induced DKD model...
Autores principales: | Xu, Yushan, Li, Lan, Tang, Ping, Zhang, Jingrong, Zhong, Ruxian, Luo, Jingmei, Lin, Jie, Zhang, Lihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585855/ https://www.ncbi.nlm.nih.gov/pubmed/37853335 http://dx.doi.org/10.1186/s12882-023-03362-4 |
Ejemplares similares
-
Bioinformatics analysis identifies potential ferroptosis key genes in the pathogenesis of diabetic peripheral neuropathy
por: Tian, Ming, et al.
Publicado: (2023) -
Bioinformatic analysis identifies key transcriptome signatures in temporal lobe epilepsy
por: Chen, Qing‐Lan, et al.
Publicado: (2020) -
Bioinformatics Analysis Identifies Potential Ferroptosis Key Gene in Type 2 Diabetic Islet Dysfunction
por: Ye, Haowen, et al.
Publicado: (2022) -
Bioinformatic Analysis Identifies Potential Key Genes in the Pathogenesis of Melanoma
por: Han, Yanjie, et al.
Publicado: (2020) -
Bioinformatic analysis identifies potential key genes of epilepsy
por: Zhu, Yike, et al.
Publicado: (2021)