Cargando…

Improving computerized decision support system interventions: a qualitative study combining the theoretical domains framework with the GUIDES Checklist

BACKGROUND: Computerized clinical decision support systems (CDSSs) can improve care by bridging knowledge to practice gaps. However, the real-world uptake of such systems in health care settings has been suboptimal. We sought to: (1) use the Theoretical Domains Framework (TDF) to identify determinan...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Janet, Kouri, Andrew, Simard, Sarah Nicole, Lam Shin Cheung, Jeffrey, Segovia, Stephanie, Gupta, Samir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585867/
https://www.ncbi.nlm.nih.gov/pubmed/37853386
http://dx.doi.org/10.1186/s12911-023-02273-6
Descripción
Sumario:BACKGROUND: Computerized clinical decision support systems (CDSSs) can improve care by bridging knowledge to practice gaps. However, the real-world uptake of such systems in health care settings has been suboptimal. We sought to: (1) use the Theoretical Domains Framework (TDF) to identify determinants (barriers/enablers) of uptake of the Electronic Asthma Management System (eAMS) CDSS; (2) match identified TDF belief statements to elements in the Guideline Implementation with Decision Support (GUIDES) Checklist; and (3) explore the relationship between the TDF and GUIDES frameworks and the usefulness of this sequential approach for identifying opportunities to improve CDSS uptake. METHODS: In Phase 1, we conducted semistructured interviews with primary care physicians in Toronto, Canada regarding the uptake of the eAMS CDSS. Using content analysis, two coders independently analyzed interview transcripts guided by the TDF to generate themes representing barriers and enablers to CDSS uptake. In Phase 2, the same reviewers independently mapped each belief statement to a GUIDES domain and factor. We calculated the proportion of TDF belief statements that linked to each GUIDES domain and the proportion of TDF domains that linked to GUIDES factors (and vice-versa) and domains. RESULTS: We interviewed 10 participants before data saturation. In Phase 1, we identified 53 belief statements covering 12 TDF domains; 18 (34.0%) were barriers, and 35 (66.0%) were enablers. In Phase 2, 41 statements (77.4%) linked to at least one GUIDES factor, while 12 (22.6%) did not link to any specific factor. The GUIDES Context Domain was linked to the largest number of belief statements (19/53; 35.8%). Each TDF domain linked to one or more GUIDES factor, with 6 TDF domains linking to more than 1 factor and 8 TDF domains linking to more than 1 GUIDES domain. CONCLUSIONS: The TDF provides unique insights into barriers and enablers to CDSS uptake, which can then be mapped to GUIDES domains and factors to identify required changes to CDSS context, content, and system. This can be followed by conventional mapping of TDF domains to behaviour change techniques to optimize CDSS implementation. This novel step-wise approach combines two established frameworks to optimize CDSS interventions, and requires prospective validation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12911-023-02273-6.