Cargando…
Artificial Intelligence based wrapper for high dimensional feature selection
BACKGROUND: Feature selection is important in high dimensional data analysis. The wrapper approach is one of the ways to perform feature selection, but it is computationally intensive as it builds and evaluates models of multiple subsets of features. The existing wrapper algorithm primarily focuses...
Autores principales: | Jain, Rahi, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585895/ https://www.ncbi.nlm.nih.gov/pubmed/37853338 http://dx.doi.org/10.1186/s12859-023-05502-x |
Ejemplares similares
-
HDSI: High dimensional selection with interactions algorithm on feature selection and testing
por: Jain, Rahi, et al.
Publicado: (2021) -
An improved wrapper-based feature selection method for machinery fault diagnosis
por: Hui, Kar Hoou, et al.
Publicado: (2017) -
Ranking of characteristic features in combined wrapper approaches to selection
por: Stańczyk, Urszula
Publicado: (2014) -
An Efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets
por: Pirgazi, Jamshid, et al.
Publicado: (2019) -
Drug–target interaction prediction based on protein features, using wrapper feature selection
por: Abbasi Mesrabadi, Hengame, et al.
Publicado: (2023)