Cargando…
Detecting influential subjects in intensive longitudinal data using mixed-effects location scale models
BACKGROUND: Collection of intensive longitudinal health outcomes allows joint modeling of their mean (location) and variability (scale). Focusing on the location of the outcome, measures to detect influential subjects in longitudinal data using standard mixed-effects regression models (MRMs) have be...
Autores principales: | Zhang, Xingruo, Hedeker, Donald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585916/ https://www.ncbi.nlm.nih.gov/pubmed/37853339 http://dx.doi.org/10.1186/s12874-023-02046-9 |
Ejemplares similares
-
Defining R‐squared measures for mixed‐effects location scale models
por: Zhang, Xingruo, et al.
Publicado: (2022) -
Why Are Children Different in Their Daily Sedentariness? An Approach Based on the Mixed-Effects Location Scale Model
por: Gomes, Thayse Natacha, et al.
Publicado: (2015) -
Analysis of multivariate longitudinal substance use outcomes using multivariate mixed cumulative logit model
por: Lin, Xiaolei, et al.
Publicado: (2021) -
MixWILD: A program for examining the effects of variance and slope of time-varying variables in intensive longitudinal data
por: Dzubur, Eldin, et al.
Publicado: (2020) -
Locating influential nodes in complex networks
por: Malliaros, Fragkiskos D., et al.
Publicado: (2016)