Cargando…
Understanding Organisms Using Ecological Observatory Networks
Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586040/ https://www.ncbi.nlm.nih.gov/pubmed/37867910 http://dx.doi.org/10.1093/iob/obad036 |
Sumario: | Human activities are rapidly changing ecosystems around the world. These changes have widespread implications for the preservation of biodiversity, agricultural productivity, prevalence of zoonotic diseases, and sociopolitical conflict. To understand and improve the predictive capacity for these and other biological phenomena, some scientists are now relying on observatory networks, which are often composed of systems of sensors, teams of field researchers, and databases of abiotic and biotic measurements across multiple temporal and spatial scales. One well-known example is NEON, the US-based National Ecological Observatory Network. Although NEON and similar networks have informed studies of population, community, and ecosystem ecology for years, they have been minimally used by organismal biologists. NEON provides organismal biologists, in particular those interested in NEON's focal taxa, with an unprecedented opportunity to study phenomena such as range expansions, disease epidemics, invasive species colonization, macrophysiology, and other biological processes that fundamentally involve organismal variation. Here, we use NEON as an exemplar of the promise of observatory networks for understanding the causes and consequences of morphological, behavioral, molecular, and physiological variation among individual organisms. |
---|