Cargando…

Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications

[Image: see text] A new and unique alloy formulation design strategy has been developed in order to fabricate thin-layered metallic glasses (TLMGs) with superior fracture resistance and low coefficient of friction (COF) during the nanoscratching test. Due to the outstanding properties, TFMG could be...

Descripción completa

Detalles Bibliográficos
Autores principales: Muhabie, Adem Ali, Girma, Wubshet Mekonnen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586174/
https://www.ncbi.nlm.nih.gov/pubmed/37867687
http://dx.doi.org/10.1021/acsomega.3c04451
_version_ 1785123102543314944
author Muhabie, Adem Ali
Girma, Wubshet Mekonnen
author_facet Muhabie, Adem Ali
Girma, Wubshet Mekonnen
author_sort Muhabie, Adem Ali
collection PubMed
description [Image: see text] A new and unique alloy formulation design strategy has been developed in order to fabricate thin-layered metallic glasses (TLMGs) with superior fracture resistance and low coefficient of friction (COF) during the nanoscratching test. Due to the outstanding properties, TFMG could be applied for different uses, such as for surface coating, biomedical, bioimprinting, electronic devices, spacecraft, and railway, all of which need surface fracture resistance. The fabricated Zr-based metallic glass was prepared from Zr, Al, Cu, Ni, and Ag above 99.9 Wt % in purity by arch melting techniques. TFMGs were coated on silicon wafer by sputtering the vapor deposition method from bulk metallic glass then annealed below glass transition temperature T(g) ∼ 450 °C for 10, 30, and 60 min. Nanoindentation and nanoscratch tests were used to investigate nanomechanical and nanotribological properties, and atomic force microscopy (AFM) was used to examine the surface morphology and microstructures of TLMG. The nanoindentation data indicated that the average hardness of metallic glasses increased from 9.75 (as-cast MG) to 13.4 GPa (annealed for 60 min). Coefficients of friction for the cast sample, annealed for unannealed, 10, 30, and 60 min, were 0.062, 0.049, 0.039, and 0.03, respectively, as well as the wear depths were 201.56, 148.43, 37.32, and 25.27 nm, respectively. These studies show that the coefficient of friction and wear rate decreases when the annealing time increases as a result of atomic reordering and structural relaxation that occurred at longer annealing times. Furthermore, continuous wear process, wear depth, wear track volume, and contact area decrease with increasing annealing time. This study can be used to design protocols to prepare novel TLMGs, which have outstanding mechanical and tribological properties for engineering materials applications.
format Online
Article
Text
id pubmed-10586174
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105861742023-10-20 Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications Muhabie, Adem Ali Girma, Wubshet Mekonnen ACS Omega [Image: see text] A new and unique alloy formulation design strategy has been developed in order to fabricate thin-layered metallic glasses (TLMGs) with superior fracture resistance and low coefficient of friction (COF) during the nanoscratching test. Due to the outstanding properties, TFMG could be applied for different uses, such as for surface coating, biomedical, bioimprinting, electronic devices, spacecraft, and railway, all of which need surface fracture resistance. The fabricated Zr-based metallic glass was prepared from Zr, Al, Cu, Ni, and Ag above 99.9 Wt % in purity by arch melting techniques. TFMGs were coated on silicon wafer by sputtering the vapor deposition method from bulk metallic glass then annealed below glass transition temperature T(g) ∼ 450 °C for 10, 30, and 60 min. Nanoindentation and nanoscratch tests were used to investigate nanomechanical and nanotribological properties, and atomic force microscopy (AFM) was used to examine the surface morphology and microstructures of TLMG. The nanoindentation data indicated that the average hardness of metallic glasses increased from 9.75 (as-cast MG) to 13.4 GPa (annealed for 60 min). Coefficients of friction for the cast sample, annealed for unannealed, 10, 30, and 60 min, were 0.062, 0.049, 0.039, and 0.03, respectively, as well as the wear depths were 201.56, 148.43, 37.32, and 25.27 nm, respectively. These studies show that the coefficient of friction and wear rate decreases when the annealing time increases as a result of atomic reordering and structural relaxation that occurred at longer annealing times. Furthermore, continuous wear process, wear depth, wear track volume, and contact area decrease with increasing annealing time. This study can be used to design protocols to prepare novel TLMGs, which have outstanding mechanical and tribological properties for engineering materials applications. American Chemical Society 2023-10-05 /pmc/articles/PMC10586174/ /pubmed/37867687 http://dx.doi.org/10.1021/acsomega.3c04451 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Muhabie, Adem Ali
Girma, Wubshet Mekonnen
Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications
title Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications
title_full Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications
title_fullStr Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications
title_full_unstemmed Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications
title_short Annealing Effect on Mechanical and Tribological Behaviors of Nanoscale Mechanics of Zr(60)Cu(25)Al(5)Ag(5)Ni(5) Thin-Layer Metallic Glasses for Engineering Materials Applications
title_sort annealing effect on mechanical and tribological behaviors of nanoscale mechanics of zr(60)cu(25)al(5)ag(5)ni(5) thin-layer metallic glasses for engineering materials applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586174/
https://www.ncbi.nlm.nih.gov/pubmed/37867687
http://dx.doi.org/10.1021/acsomega.3c04451
work_keys_str_mv AT muhabieademali annealingeffectonmechanicalandtribologicalbehaviorsofnanoscalemechanicsofzr60cu25al5ag5ni5thinlayermetallicglassesforengineeringmaterialsapplications
AT girmawubshetmekonnen annealingeffectonmechanicalandtribologicalbehaviorsofnanoscalemechanicsofzr60cu25al5ag5ni5thinlayermetallicglassesforengineeringmaterialsapplications