Cargando…
Atom-Based Machine Learning Model for Quantitative Property–Structure Relationship of Electronic Properties of Fusenes and Substituted Fusenes
[Image: see text] This study presents the development of machine-learning-based quantitative structure–property relationship (QSPR) models for predicting electron affinity, ionization potential, and band gap of fusenes from different chemical classes. Three variants of the atom-based Weisfeiler–Lehm...
Autores principales: | Nguyen, Tuan H., Le, Khang M., Nguyen, Lam H., Truong, Thanh N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586267/ https://www.ncbi.nlm.nih.gov/pubmed/37867641 http://dx.doi.org/10.1021/acsomega.3c05212 |
Ejemplares similares
-
Fusen herbal tea influenced of spleen deficiency rats model
por: Lou, Xin, et al.
Publicado: (2017) -
Machine Learning-Based
Quantitative Structure–Property
Relationships for the Electronic Properties of Cyano Polycyclic Aromatic
Hydrocarbons
por: Nguyen, Tuan H., et al.
Publicado: (2022) -
Application of Machine Learning in Developing Quantitative
Structure–Property Relationship for Electronic Properties of
Polyaromatic Compounds
por: Nguyen, Tuan H., et al.
Publicado: (2022) -
Quantitative Structure–Property Relationships
for the Electronic Properties of Polycyclic Aromatic Hydrocarbons
por: Nguyen, Lam H., et al.
Publicado: (2018) -
Quantum Mechanical-Based Quantitative Structure–Property
Relationships for Electronic Properties of Two Large Classes of Organic
Semiconductor Materials: Polycyclic Aromatic Hydrocarbons and Thienoacenes
por: Nguyen, Lam H., et al.
Publicado: (2019)