Cargando…

Carbon Nanotube-Supported Bimetallic Core–Shell (M@Pd/CNT (M: Zn, Mn, Ag, Co, V, Ni)) Cathode Catalysts for H(2)O(2) Fuel Cells

[Image: see text] M@Pd/CNT (M: Zn, Mn, Ag, Co, V, Ni) core–shell and Pd/CNT nanoparticles were prepared by sodium borohydride reduction and explored as cathode catalysts for the hydrogen peroxide reduction reaction. Electrochemical and physical characterization techniques are applied to explore the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yapici, Burak, Sahin, Ozlem Gokdogan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586272/
https://www.ncbi.nlm.nih.gov/pubmed/37867640
http://dx.doi.org/10.1021/acsomega.3c05531
Descripción
Sumario:[Image: see text] M@Pd/CNT (M: Zn, Mn, Ag, Co, V, Ni) core–shell and Pd/CNT nanoparticles were prepared by sodium borohydride reduction and explored as cathode catalysts for the hydrogen peroxide reduction reaction. Electrochemical and physical characterization techniques are applied to explore the characteristics of the produced electrocatalysts. The cyclic voltammetry (CV) experiments show that Zn@Pd/CNT-modified electrodes have a current density of 273.2 mA cm(–2), which is 3.95 times higher than that of Pd/CNT. According to the chronoamperometric curves, Zn@Pd/CNT has the highest steady-state current density for the H(2)O(2) electro-reduction process among the synthesized electrocatalysts. Moreover, electrochemical impedance spectroscopy (EIS) spectra confirmed the previous electrochemical results due to the lowest charge transfer resistance (35 Ω) with respect to other electrocatalysts.