Cargando…
Machine Learning Developed a Programmed Cell Death Signature for Predicting Prognosis, Ecosystem, and Drug Sensitivity in Ovarian Cancer
BACKGROUND: Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of cancer-related death in women in America. Programmed cell death played a vital role in tumor progression and immunotherapy response in cancer. METHODS: The prognostic cell death sign...
Autores principales: | Wang, Le, Chen, Xi, Song, Lei, Zou, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586435/ https://www.ncbi.nlm.nih.gov/pubmed/37868825 http://dx.doi.org/10.1155/2023/7365503 |
Ejemplares similares
-
A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning
por: Zhao, Bo, et al.
Publicado: (2023) -
Machine learning developed a PI3K/Akt pathway-related signature for predicting prognosis and drug sensitivity in ovarian cancer
por: Han, Xiaofang, et al.
Publicado: (2023) -
Comprehensive Analysis of Programmed Cell Death Signature in the Prognosis, Tumor Microenvironment and Drug Sensitivity in Lung Adenocarcinoma
por: Pan, Shize, et al.
Publicado: (2022) -
Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma
por: Ding, Dongxiao, et al.
Publicado: (2023) -
Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response
por: Lian, Xin, et al.
Publicado: (2023)