Cargando…
OpenCap: Human movement dynamics from smartphone videos
Measures of human movement dynamics can predict outcomes like injury risk or musculoskeletal disease progression. However, these measures are rarely quantified in large-scale research studies or clinical practice due to the prohibitive cost, time, and expertise required. Here we present and validate...
Autores principales: | Uhlrich, Scott D., Falisse, Antoine, Kidziński, Łukasz, Muccini, Julie, Ko, Michael, Chaudhari, Akshay S., Hicks, Jennifer L., Delp, Scott L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586693/ https://www.ncbi.nlm.nih.gov/pubmed/37856442 http://dx.doi.org/10.1371/journal.pcbi.1011462 |
Ejemplares similares
-
Smartphone videos of the sit-to-stand test predict osteoarthritis and health outcomes in a nationwide study
por: Boswell, Melissa A., et al.
Publicado: (2023) -
Deep neural networks enable quantitative movement analysis using single-camera videos
por: Kidziński, Łukasz, et al.
Publicado: (2020) -
OpenSim Moco: Musculoskeletal optimal control
por: Dembia, Christopher L., et al.
Publicado: (2020) -
Automatic real-time gait event detection in children using deep neural networks
por: Kidziński, Łukasz, et al.
Publicado: (2019) -
How Connecting the Legs with a Spring Improves Human Running Economy
por: Stingel, Jon P., et al.
Publicado: (2023)