Cargando…

Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images

The clinical symptoms of ≤ 5 cm gastric stromal tumor (GST) and gastric schwannoma (GS) are similar, but the treatment regimens are different. This study explored the value of computed tomography (CT) combined with machine learning (ML) algorithms to find the best model to discriminate them. A total...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guoxian, Fan, Lifang, Liu, Jie, Wu, Shujian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587040/
https://www.ncbi.nlm.nih.gov/pubmed/37857756
http://dx.doi.org/10.1007/s12672-023-00801-4
_version_ 1785123272211300352
author Chen, Guoxian
Fan, Lifang
Liu, Jie
Wu, Shujian
author_facet Chen, Guoxian
Fan, Lifang
Liu, Jie
Wu, Shujian
author_sort Chen, Guoxian
collection PubMed
description The clinical symptoms of ≤ 5 cm gastric stromal tumor (GST) and gastric schwannoma (GS) are similar, but the treatment regimens are different. This study explored the value of computed tomography (CT) combined with machine learning (ML) algorithms to find the best model to discriminate them. A total of 126 patients with GST ≤ 5 cm and 35 patients with GS ≤ 5 during 2013–2022 were included. CT imaging features included qualitative data (tumor location, growth pattern, lobulation, surface ulcer status, necrosis, calcification, and surrounding lymph nodes) and quantitative data [long diameter (LD); short diameter (SD); LD/SD ratio; degree of enhancement (DE); heterogeneous degree (HD)]. Patients were randomly divided into a training set (n = 112) and test set (n = 49) using 7:3 stratified sampling. The univariate and multivariate logistic regression analysis were used to identify independent risk factors. Five ML algorithms were used to build prediction models: Support Vector Machine, k-Nearest Neighbor, Random Forest, Extra Trees, and Extreme Gradient Boosting Machine. The analysis identified that HDv, lobulation, and tumor growth site were independent risk factors (P < 0.05). We should focus on these three imaging features of tumors, which are relatively easy to obtain. The area under the curve for the SVM, KNN, RF, ET, and XGBoost prediction models were, respectively, 0.790, 0.895, 0.978, 0.988, and 0.946 for the training set, and were, respectively, 0.848, 0.892, 0.887, 0.912, and 0.867 for the test set. The CT combined with ML algorithms generated predictive models to improve the differential diagnosis of ≤ 5 cm GST and GS which has important clinical practical value. The Extra Trees algorithm resulted in the optimal model.
format Online
Article
Text
id pubmed-10587040
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-105870402023-10-21 Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images Chen, Guoxian Fan, Lifang Liu, Jie Wu, Shujian Discov Oncol Research The clinical symptoms of ≤ 5 cm gastric stromal tumor (GST) and gastric schwannoma (GS) are similar, but the treatment regimens are different. This study explored the value of computed tomography (CT) combined with machine learning (ML) algorithms to find the best model to discriminate them. A total of 126 patients with GST ≤ 5 cm and 35 patients with GS ≤ 5 during 2013–2022 were included. CT imaging features included qualitative data (tumor location, growth pattern, lobulation, surface ulcer status, necrosis, calcification, and surrounding lymph nodes) and quantitative data [long diameter (LD); short diameter (SD); LD/SD ratio; degree of enhancement (DE); heterogeneous degree (HD)]. Patients were randomly divided into a training set (n = 112) and test set (n = 49) using 7:3 stratified sampling. The univariate and multivariate logistic regression analysis were used to identify independent risk factors. Five ML algorithms were used to build prediction models: Support Vector Machine, k-Nearest Neighbor, Random Forest, Extra Trees, and Extreme Gradient Boosting Machine. The analysis identified that HDv, lobulation, and tumor growth site were independent risk factors (P < 0.05). We should focus on these three imaging features of tumors, which are relatively easy to obtain. The area under the curve for the SVM, KNN, RF, ET, and XGBoost prediction models were, respectively, 0.790, 0.895, 0.978, 0.988, and 0.946 for the training set, and were, respectively, 0.848, 0.892, 0.887, 0.912, and 0.867 for the test set. The CT combined with ML algorithms generated predictive models to improve the differential diagnosis of ≤ 5 cm GST and GS which has important clinical practical value. The Extra Trees algorithm resulted in the optimal model. Springer US 2023-10-19 /pmc/articles/PMC10587040/ /pubmed/37857756 http://dx.doi.org/10.1007/s12672-023-00801-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research
Chen, Guoxian
Fan, Lifang
Liu, Jie
Wu, Shujian
Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
title Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
title_full Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
title_fullStr Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
title_full_unstemmed Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
title_short Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
title_sort machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on ct images
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587040/
https://www.ncbi.nlm.nih.gov/pubmed/37857756
http://dx.doi.org/10.1007/s12672-023-00801-4
work_keys_str_mv AT chenguoxian machinelearningbasedpredictivemodelforthedifferentialdiagnosisof5cmgastricstromaltumorandgastricschwannomabasedonctimages
AT fanlifang machinelearningbasedpredictivemodelforthedifferentialdiagnosisof5cmgastricstromaltumorandgastricschwannomabasedonctimages
AT liujie machinelearningbasedpredictivemodelforthedifferentialdiagnosisof5cmgastricstromaltumorandgastricschwannomabasedonctimages
AT wushujian machinelearningbasedpredictivemodelforthedifferentialdiagnosisof5cmgastricstromaltumorandgastricschwannomabasedonctimages