Cargando…
Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
The clinical symptoms of ≤ 5 cm gastric stromal tumor (GST) and gastric schwannoma (GS) are similar, but the treatment regimens are different. This study explored the value of computed tomography (CT) combined with machine learning (ML) algorithms to find the best model to discriminate them. A total...
Autores principales: | Chen, Guoxian, Fan, Lifang, Liu, Jie, Wu, Shujian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587040/ https://www.ncbi.nlm.nih.gov/pubmed/37857756 http://dx.doi.org/10.1007/s12672-023-00801-4 |
Ejemplares similares
-
Machine learning for predicting the risk stratification of 1–5 cm gastric gastrointestinal stromal tumors based on CT
por: Zhang, Cui, et al.
Publicado: (2023) -
Differentiating gastric schwannoma from gastric stromal tumor (≤5 cm) by histogram analysis based on iodine-based material decomposition images: a preliminary study
por: Wang, Gang, et al.
Publicado: (2023) -
Small Submucosal Tumors of the Stomach: Differentiation of Gastric Schwannoma from Gastrointestinal Stromal Tumor with CT
por: Choi, Jin Wook, et al.
Publicado: (2012) -
Development of a CT image analysis-based scoring system to differentiate gastric schwannomas from gastrointestinal stromal tumors
por: Zhang, Sheng, et al.
Publicado: (2023) -
Identification of gastric schwannoma and non-metastatic gastric stromal tumor by CT: a single-institution retrospective diagnostic test
por: Gu, Xiaolong, et al.
Publicado: (2023)