Cargando…
Stepwise diagnostic algorithm for high-attenuation pulmonary abnormalities on CT
High-attenuation pulmonary abnormalities are commonly seen on CT. These findings are increasingly encountered with the growing number of CT examinations and the wide availability of thin-slice images. The abnormalities include benign lesions, such as infectious granulomatous diseases and metabolic d...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587054/ https://www.ncbi.nlm.nih.gov/pubmed/37857741 http://dx.doi.org/10.1186/s13244-023-01501-x |
Sumario: | High-attenuation pulmonary abnormalities are commonly seen on CT. These findings are increasingly encountered with the growing number of CT examinations and the wide availability of thin-slice images. The abnormalities include benign lesions, such as infectious granulomatous diseases and metabolic diseases, and malignant tumors, such as lung cancers and metastatic tumors. Due to the wide spectrum of diseases, the proper diagnosis of high-attenuation abnormalities can be challenging. The assessment of these abnormal findings requires scrutiny, and the treatment is imperative. Our proposed stepwise diagnostic algorithm consists of five steps. Step 1: Establish the presence or absence of metallic artifacts. Step 2: Identify associated nodular or mass-like soft tissue components. Step 3: Establish the presence of solitary or multiple lesions if identified in Step 2. Step 4: Ascertain the predominant distribution in the upper or lower lungs if not identified in Step 2. Step 5: Identify the morphological pattern, such as linear, consolidation, nodular, or micronodular if not identified in Step 4. These five steps to diagnosing high-attenuation abnormalities subdivide the lesions into nine categories. This stepwise radiologic diagnostic approach could help to narrow the differential diagnosis for various pulmonary high-attenuation abnormalities and to achieve a precise diagnosis. Critical relevance statement Our proposed stepwise diagnostic algorithm for high-attenuation pulmonary abnormalities may help to recognize a variety of those high-attenuation findings, to determine whether the associated diseases require further investigation, and to guide appropriate patient management. Key points • To provide a stepwise diagnostic approach to high-attenuation pulmonary abnormalities. • To familiarize radiologists with the varying cause of high-attenuation pulmonary abnormalities. • To recognize which high-attenuation abnormalities require scrutiny and prompt treatment. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13244-023-01501-x. |
---|