Cargando…
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data
Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes...
Autores principales: | Kim, Daniel, Tran, Andy, Kim, Hani Jieun, Lin, Yingxin, Yang, Jean Yee Hwa, Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587078/ https://www.ncbi.nlm.nih.gov/pubmed/37857632 http://dx.doi.org/10.1038/s41540-023-00312-6 |
Ejemplares similares
-
scClassify: sample size estimation and multiscale classification of cells using single and multiple reference
por: Lin, Yingxin, et al.
Publicado: (2020) -
scFeatures: multi-view representations of single-cell and spatial data for disease outcome prediction
por: Cao, Yue, et al.
Publicado: (2022) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023) -
scReClassify: post hoc cell type classification of single-cell rNA-seq data
por: Kim, Taiyun, et al.
Publicado: (2019) -
Computational approaches for direct cell reprogramming: from the bulk omics era to the single cell era
por: Tran, Andy, et al.
Publicado: (2022)