Cargando…

A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis

Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Barnett, Michael, Wang, Dongang, Beadnall, Heidi, Bischof, Antje, Brunacci, David, Butzkueven, Helmut, Brown, J. William L., Cabezas, Mariano, Das, Tilak, Dugal, Tej, Guilfoyle, Daniel, Klistorner, Alexander, Krieger, Stephen, Kyle, Kain, Ly, Linda, Masters, Lynette, Shieh, Andy, Tang, Zihao, van der Walt, Anneke, Ward, Kayla, Wiendl, Heinz, Zhan, Geng, Zivadinov, Robert, Barnett, Yael, Wang, Chenyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587188/
https://www.ncbi.nlm.nih.gov/pubmed/37857813
http://dx.doi.org/10.1038/s41746-023-00940-6
_version_ 1785123306111762432
author Barnett, Michael
Wang, Dongang
Beadnall, Heidi
Bischof, Antje
Brunacci, David
Butzkueven, Helmut
Brown, J. William L.
Cabezas, Mariano
Das, Tilak
Dugal, Tej
Guilfoyle, Daniel
Klistorner, Alexander
Krieger, Stephen
Kyle, Kain
Ly, Linda
Masters, Lynette
Shieh, Andy
Tang, Zihao
van der Walt, Anneke
Ward, Kayla
Wiendl, Heinz
Zhan, Geng
Zivadinov, Robert
Barnett, Yael
Wang, Chenyu
author_facet Barnett, Michael
Wang, Dongang
Beadnall, Heidi
Bischof, Antje
Brunacci, David
Butzkueven, Helmut
Brown, J. William L.
Cabezas, Mariano
Das, Tilak
Dugal, Tej
Guilfoyle, Daniel
Klistorner, Alexander
Krieger, Stephen
Kyle, Kain
Ly, Linda
Masters, Lynette
Shieh, Andy
Tang, Zihao
van der Walt, Anneke
Ward, Kayla
Wiendl, Heinz
Zhan, Geng
Zivadinov, Robert
Barnett, Yael
Wang, Chenyu
author_sort Barnett, Michael
collection PubMed
description Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS.
format Online
Article
Text
id pubmed-10587188
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105871882023-10-21 A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis Barnett, Michael Wang, Dongang Beadnall, Heidi Bischof, Antje Brunacci, David Butzkueven, Helmut Brown, J. William L. Cabezas, Mariano Das, Tilak Dugal, Tej Guilfoyle, Daniel Klistorner, Alexander Krieger, Stephen Kyle, Kain Ly, Linda Masters, Lynette Shieh, Andy Tang, Zihao van der Walt, Anneke Ward, Kayla Wiendl, Heinz Zhan, Geng Zivadinov, Robert Barnett, Yael Wang, Chenyu NPJ Digit Med Article Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. Nature Publishing Group UK 2023-10-19 /pmc/articles/PMC10587188/ /pubmed/37857813 http://dx.doi.org/10.1038/s41746-023-00940-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Barnett, Michael
Wang, Dongang
Beadnall, Heidi
Bischof, Antje
Brunacci, David
Butzkueven, Helmut
Brown, J. William L.
Cabezas, Mariano
Das, Tilak
Dugal, Tej
Guilfoyle, Daniel
Klistorner, Alexander
Krieger, Stephen
Kyle, Kain
Ly, Linda
Masters, Lynette
Shieh, Andy
Tang, Zihao
van der Walt, Anneke
Ward, Kayla
Wiendl, Heinz
Zhan, Geng
Zivadinov, Robert
Barnett, Yael
Wang, Chenyu
A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
title A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
title_full A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
title_fullStr A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
title_full_unstemmed A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
title_short A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
title_sort real-world clinical validation for ai-based mri monitoring in multiple sclerosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587188/
https://www.ncbi.nlm.nih.gov/pubmed/37857813
http://dx.doi.org/10.1038/s41746-023-00940-6
work_keys_str_mv AT barnettmichael arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wangdongang arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT beadnallheidi arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT bischofantje arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT brunaccidavid arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT butzkuevenhelmut arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT brownjwilliaml arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT cabezasmariano arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT dastilak arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT dugaltej arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT guilfoyledaniel arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT klistorneralexander arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT kriegerstephen arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT kylekain arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT lylinda arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT masterslynette arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT shiehandy arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT tangzihao arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT vanderwaltanneke arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wardkayla arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wiendlheinz arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT zhangeng arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT zivadinovrobert arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT barnettyael arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wangchenyu arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT barnettmichael realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wangdongang realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT beadnallheidi realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT bischofantje realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT brunaccidavid realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT butzkuevenhelmut realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT brownjwilliaml realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT cabezasmariano realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT dastilak realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT dugaltej realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT guilfoyledaniel realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT klistorneralexander realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT kriegerstephen realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT kylekain realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT lylinda realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT masterslynette realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT shiehandy realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT tangzihao realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT vanderwaltanneke realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wardkayla realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wiendlheinz realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT zhangeng realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT zivadinovrobert realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT barnettyael realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis
AT wangchenyu realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis