Cargando…
A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis
Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where ap...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587188/ https://www.ncbi.nlm.nih.gov/pubmed/37857813 http://dx.doi.org/10.1038/s41746-023-00940-6 |
_version_ | 1785123306111762432 |
---|---|
author | Barnett, Michael Wang, Dongang Beadnall, Heidi Bischof, Antje Brunacci, David Butzkueven, Helmut Brown, J. William L. Cabezas, Mariano Das, Tilak Dugal, Tej Guilfoyle, Daniel Klistorner, Alexander Krieger, Stephen Kyle, Kain Ly, Linda Masters, Lynette Shieh, Andy Tang, Zihao van der Walt, Anneke Ward, Kayla Wiendl, Heinz Zhan, Geng Zivadinov, Robert Barnett, Yael Wang, Chenyu |
author_facet | Barnett, Michael Wang, Dongang Beadnall, Heidi Bischof, Antje Brunacci, David Butzkueven, Helmut Brown, J. William L. Cabezas, Mariano Das, Tilak Dugal, Tej Guilfoyle, Daniel Klistorner, Alexander Krieger, Stephen Kyle, Kain Ly, Linda Masters, Lynette Shieh, Andy Tang, Zihao van der Walt, Anneke Ward, Kayla Wiendl, Heinz Zhan, Geng Zivadinov, Robert Barnett, Yael Wang, Chenyu |
author_sort | Barnett, Michael |
collection | PubMed |
description | Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. |
format | Online Article Text |
id | pubmed-10587188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105871882023-10-21 A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis Barnett, Michael Wang, Dongang Beadnall, Heidi Bischof, Antje Brunacci, David Butzkueven, Helmut Brown, J. William L. Cabezas, Mariano Das, Tilak Dugal, Tej Guilfoyle, Daniel Klistorner, Alexander Krieger, Stephen Kyle, Kain Ly, Linda Masters, Lynette Shieh, Andy Tang, Zihao van der Walt, Anneke Ward, Kayla Wiendl, Heinz Zhan, Geng Zivadinov, Robert Barnett, Yael Wang, Chenyu NPJ Digit Med Article Modern management of MS targets No Evidence of Disease Activity (NEDA): no clinical relapses, no magnetic resonance imaging (MRI) disease activity and no disability worsening. While MRI is the principal tool available to neurologists for monitoring clinically silent MS disease activity and, where appropriate, escalating treatment, standard radiology reports are qualitative and may be insensitive to the development of new or enlarging lesions. Existing quantitative neuroimaging tools lack adequate clinical validation. In 397 multi-center MRI scan pairs acquired in routine practice, we demonstrate superior case-level sensitivity of a clinically integrated AI-based tool over standard radiology reports (93.3% vs 58.3%), relative to a consensus ground truth, with minimal loss of specificity. We also demonstrate equivalence of the AI-tool with a core clinical trial imaging lab for lesion activity and quantitative brain volumetric measures, including percentage brain volume loss (PBVC), an accepted biomarker of neurodegeneration in MS (mean PBVC −0.32% vs −0.36%, respectively), whereas even severe atrophy (>0.8% loss) was not appreciated in radiology reports. Finally, the AI-tool additionally embeds a clinically meaningful, experiential comparator that returns a relevant MS patient centile for lesion burden, revealing, in our cohort, inconsistencies in qualitative descriptors used in radiology reports. AI-based image quantitation enhances the accuracy of, and value-adds to, qualitative radiology reporting. Scaled deployment of these tools will open a path to precision management for patients with MS. Nature Publishing Group UK 2023-10-19 /pmc/articles/PMC10587188/ /pubmed/37857813 http://dx.doi.org/10.1038/s41746-023-00940-6 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Barnett, Michael Wang, Dongang Beadnall, Heidi Bischof, Antje Brunacci, David Butzkueven, Helmut Brown, J. William L. Cabezas, Mariano Das, Tilak Dugal, Tej Guilfoyle, Daniel Klistorner, Alexander Krieger, Stephen Kyle, Kain Ly, Linda Masters, Lynette Shieh, Andy Tang, Zihao van der Walt, Anneke Ward, Kayla Wiendl, Heinz Zhan, Geng Zivadinov, Robert Barnett, Yael Wang, Chenyu A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
title | A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
title_full | A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
title_fullStr | A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
title_full_unstemmed | A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
title_short | A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis |
title_sort | real-world clinical validation for ai-based mri monitoring in multiple sclerosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587188/ https://www.ncbi.nlm.nih.gov/pubmed/37857813 http://dx.doi.org/10.1038/s41746-023-00940-6 |
work_keys_str_mv | AT barnettmichael arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wangdongang arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT beadnallheidi arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT bischofantje arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT brunaccidavid arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT butzkuevenhelmut arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT brownjwilliaml arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT cabezasmariano arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT dastilak arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT dugaltej arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT guilfoyledaniel arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT klistorneralexander arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT kriegerstephen arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT kylekain arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT lylinda arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT masterslynette arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT shiehandy arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT tangzihao arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT vanderwaltanneke arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wardkayla arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wiendlheinz arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT zhangeng arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT zivadinovrobert arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT barnettyael arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wangchenyu arealworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT barnettmichael realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wangdongang realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT beadnallheidi realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT bischofantje realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT brunaccidavid realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT butzkuevenhelmut realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT brownjwilliaml realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT cabezasmariano realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT dastilak realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT dugaltej realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT guilfoyledaniel realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT klistorneralexander realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT kriegerstephen realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT kylekain realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT lylinda realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT masterslynette realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT shiehandy realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT tangzihao realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT vanderwaltanneke realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wardkayla realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wiendlheinz realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT zhangeng realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT zivadinovrobert realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT barnettyael realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis AT wangchenyu realworldclinicalvalidationforaibasedmrimonitoringinmultiplesclerosis |