Cargando…
A case study in applying artificial intelligence-based named entity recognition to develop an automated ophthalmic disease registry
PURPOSE: Advances in artificial intelligence (AI)-based named entity extraction (NER) have improved the ability to extract diagnostic entities from unstructured, narrative, free-text data in electronic health records. However, there is a lack of ready-to-use tools and workflows to encourage the use...
Autores principales: | Macri, Carmelo Z, Teoh, Sheng Chieh, Bacchi, Stephen, Tan, Ian, Casson, Robert, Sun, Michelle T, Selva, Dinesh, Chan, WengOnn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587337/ https://www.ncbi.nlm.nih.gov/pubmed/37535181 http://dx.doi.org/10.1007/s00417-023-06190-2 |
Ejemplares similares
-
Evaluating the Ability of Open-Source Artificial Intelligence to Predict Accepting-Journal Impact Factor and Eigenfactor Score Using Academic Article Abstracts: Cross-sectional Machine Learning Analysis
por: Macri, Carmelo, et al.
Publicado: (2023) -
Overcoming the impact of physiologic tremors in ophthalmology
por: Singh, Gurfarmaan, et al.
Publicado: (2022) -
The potential impact of 5G telecommunication technology on ophthalmology
por: Singh, Gurfarmaan, et al.
Publicado: (2021) -
Ophthalmology Operation Note Encoding with Open-Source Machine Learning and Natural Language Processing
por: Lee, Yong Min, et al.
Publicado: (2023) -
Assessing the subjective quality of smartphone anterior segment photography: a non-inferiority study
por: Goel, Raghav, et al.
Publicado: (2022)