Cargando…
Accurate prediction of protein folding mechanisms by simple structure-based statistical mechanical models
Recent breakthroughs in highly accurate protein structure prediction using deep neural networks have made considerable progress in solving the structure prediction component of the ‘protein folding problem’. However, predicting detailed mechanisms of how proteins fold into specific native structures...
Autores principales: | Ooka, Koji, Arai, Munehito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587348/ https://www.ncbi.nlm.nih.gov/pubmed/37857633 http://dx.doi.org/10.1038/s41467-023-41664-1 |
Ejemplares similares
-
The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics
por: Ooka, Koji, et al.
Publicado: (2022) -
Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins
por: Arai, Munehito
Publicado: (2018) -
Highly accurate protein structure prediction with AlphaFold
por: Jumper, John, et al.
Publicado: (2021) -
Detecting Selection on Protein Stability through Statistical Mechanical Models of Folding and Evolution
por: Bastolla, Ugo
Publicado: (2014) -
Thermodynamics and folding landscapes of large proteins from a statistical mechanical model
por: Gopi, Soundhararajan, et al.
Publicado: (2019)