Cargando…
Deep learning enables stochastic optical reconstruction microscopy-like superresolution image reconstruction from conventional microscopy
Despite its remarkable potential for transforming low-resolution images, deep learning faces significant challenges in achieving high-quality superresolution microscopy imaging from wide-field (conventional) microscopy. Here, we present X-Microscopy, a computational tool comprising two deep learning...
Autores principales: | Xu, Lei, Kan, Shichao, Yu, Xiying, Liu, Ye, Fu, Yuxia, Peng, Yiqiang, Liang, Yanhui, Cen, Yigang, Zhu, Changjun, Jiang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587619/ https://www.ncbi.nlm.nih.gov/pubmed/37867953 http://dx.doi.org/10.1016/j.isci.2023.108145 |
Ejemplares similares
-
Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy
por: Kim, Doory, et al.
Publicado: (2015) -
Superresolution fluorescence microscopy for 3D reconstruction of thick samples
por: Park, Sangjun, et al.
Publicado: (2018) -
Superresolution structured illumination microscopy reconstruction algorithms: a review
por: Chen, Xin, et al.
Publicado: (2023) -
Single particle maximum likelihood reconstruction from superresolution microscopy images
por: Verdier, Timothée, et al.
Publicado: (2017) -
Superresolution optical microscopy: the quest for enhanced resolution and contrast
por: Masters, Barry R
Publicado: (2020)