Cargando…
Keratoconus Detection-based on Dynamic Corneal Deformation Videos Using Deep Learning
OBJECTIVE: To assess the performance of convolutional neural networks (CNNs) for automated detection of keratoconus (KC) in standalone Scheimpflug-based dynamic corneal deformation videos. DESIGN: Retrospective cohort study. PARTICIPANTS: We retrospectively analyzed datasets with records of 734 nonc...
Autores principales: | Abdelmotaal, Hazem, Hazarbassanov, Rossen Mihaylov, Salouti, Ramin, Nowroozzadeh, M. Hossein, Taneri, Suphi, Al-Timemy, Ali H., Lavric, Alexandru, Yousefi, Siamak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587634/ https://www.ncbi.nlm.nih.gov/pubmed/37868800 http://dx.doi.org/10.1016/j.xops.2023.100380 |
Ejemplares similares
-
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
por: Al-Timemy, Ali H., et al.
Publicado: (2023) -
A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps
por: Al-Timemy, Ali H., et al.
Publicado: (2021) -
Association between visual field damage and corneal structural parameters
por: Lavric, Alexandru, et al.
Publicado: (2021) -
Assessment of the changes in corneal biomechanical properties after collagen cross-linking in patients with keratoconus
por: Salouti, Ramin, et al.
Publicado: (2019) -
Evaluation of Epithelial Integrity with Various Transepithelial Corneal Cross-Linking Protocols for Treatment of Keratoconus
por: Taneri, Suphi, et al.
Publicado: (2014)