Cargando…
Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning
PURPOSE: To assess the performance of a perimetric strategy using structure–function predictions from a deep learning (DL) model. METHODS: Visual field test–retest data from 146 eyes (75 patients) with glaucoma with (median [5th–95th percentile]) 10 [7, 10] tests per eye were used. Structure–functio...
Autores principales: | Montesano, Giovanni, Lazaridis, Georgios, Ometto, Giovanni, Crabb, David P., Garway-Heath, David F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587851/ https://www.ncbi.nlm.nih.gov/pubmed/37831447 http://dx.doi.org/10.1167/tvst.12.10.10 |
Ejemplares similares
-
Validating Trend-Based End Points for Neuroprotection Trials in Glaucoma
por: Montesano, Giovanni, et al.
Publicado: (2023) -
Spatial Summation in the Glaucomatous Macula: A Link With Retinal Ganglion Cell Damage
por: Montesano, Giovanni, et al.
Publicado: (2023) -
Hierarchical Censored Bayesian Analysis of Visual Field Progression
por: Montesano, Giovanni, et al.
Publicado: (2021) -
Evaluation of Central and Peripheral Visual Field Concordance in Glaucoma
por: Odden, Jamie L., et al.
Publicado: (2016) -
Suprathreshold Approaches to Mapping the Visual Field in Advanced Glaucoma
por: Denniss, Jonathan, et al.
Publicado: (2023)