Cargando…
Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice
INTRODUCTION: Glucose transporter 1 (GLUT1) is essential for glucose transport into the brain and is predominantly expressed in the cerebral microvasculature. Downregulation of GLUT1 precedes the development of cognitive impairment in neurodegenerative conditions. Surgical trauma induces blood–brain...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588063/ https://www.ncbi.nlm.nih.gov/pubmed/37858199 http://dx.doi.org/10.1186/s12974-023-02905-8 |
_version_ | 1785123498514972672 |
---|---|
author | Chen, Ying Joo, Jin Chu, John Man-Tak Chang, Raymond Chuen-Chung Wong, Gordon Tin-Chun |
author_facet | Chen, Ying Joo, Jin Chu, John Man-Tak Chang, Raymond Chuen-Chung Wong, Gordon Tin-Chun |
author_sort | Chen, Ying |
collection | PubMed |
description | INTRODUCTION: Glucose transporter 1 (GLUT1) is essential for glucose transport into the brain and is predominantly expressed in the cerebral microvasculature. Downregulation of GLUT1 precedes the development of cognitive impairment in neurodegenerative conditions. Surgical trauma induces blood–brain barrier (BBB) disruption, neuroinflammation, neuronal mitochondria dysfunction, and acute cognitive impairment. We hypothesized that surgery reduces the expression of GLUT1 in the BBB that in turn disrupts its integrity and contributes to metabolic dysregulation in the brain that culminates in postoperative cognitive impairment. METHODOLOGY: Using an abdominal surgery model in aged WT mice, we assessed the perioperative changes in cognitive performance, tight junction proteins expression, GLUT1 expression, and the associated metabolic effects in the hippocampus. Thereafter, we evaluated the effects of these parameters in aged mice with conditional overexpression of GLUT1, and then again in aged mice with conditional overexpression of GLUT1 with or without prior exposure to the GLUT1 inhibitor ST-31. RESULTS: We showed a significant decline in cognitive performance, along with GLUT1 reduction and diminished glucose metabolism, especially in the ATP level in the postoperative mice compared with controls. Overexpression of GLUT1 expression alleviated postoperative cognitive decline and improved metabolic profiles, especially in adenosine, but did not directly restore ATP generation to control levels. GLUT1 inhibition ameliorated the postoperative beneficial effects of GLUT1 overexpression. CONCLUSIONS: Surgery-induced GLUT1 reduction significantly contributes to postoperative cognitive deficits in aged mice by affecting glucose metabolism in the brain. It indicates the potential of targeting GLUT1 to ameliorate perioperative neurocognitive disorders. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12974-023-02905-8. |
format | Online Article Text |
id | pubmed-10588063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-105880632023-10-21 Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice Chen, Ying Joo, Jin Chu, John Man-Tak Chang, Raymond Chuen-Chung Wong, Gordon Tin-Chun J Neuroinflammation Research INTRODUCTION: Glucose transporter 1 (GLUT1) is essential for glucose transport into the brain and is predominantly expressed in the cerebral microvasculature. Downregulation of GLUT1 precedes the development of cognitive impairment in neurodegenerative conditions. Surgical trauma induces blood–brain barrier (BBB) disruption, neuroinflammation, neuronal mitochondria dysfunction, and acute cognitive impairment. We hypothesized that surgery reduces the expression of GLUT1 in the BBB that in turn disrupts its integrity and contributes to metabolic dysregulation in the brain that culminates in postoperative cognitive impairment. METHODOLOGY: Using an abdominal surgery model in aged WT mice, we assessed the perioperative changes in cognitive performance, tight junction proteins expression, GLUT1 expression, and the associated metabolic effects in the hippocampus. Thereafter, we evaluated the effects of these parameters in aged mice with conditional overexpression of GLUT1, and then again in aged mice with conditional overexpression of GLUT1 with or without prior exposure to the GLUT1 inhibitor ST-31. RESULTS: We showed a significant decline in cognitive performance, along with GLUT1 reduction and diminished glucose metabolism, especially in the ATP level in the postoperative mice compared with controls. Overexpression of GLUT1 expression alleviated postoperative cognitive decline and improved metabolic profiles, especially in adenosine, but did not directly restore ATP generation to control levels. GLUT1 inhibition ameliorated the postoperative beneficial effects of GLUT1 overexpression. CONCLUSIONS: Surgery-induced GLUT1 reduction significantly contributes to postoperative cognitive deficits in aged mice by affecting glucose metabolism in the brain. It indicates the potential of targeting GLUT1 to ameliorate perioperative neurocognitive disorders. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12974-023-02905-8. BioMed Central 2023-10-19 /pmc/articles/PMC10588063/ /pubmed/37858199 http://dx.doi.org/10.1186/s12974-023-02905-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Chen, Ying Joo, Jin Chu, John Man-Tak Chang, Raymond Chuen-Chung Wong, Gordon Tin-Chun Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
title | Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
title_full | Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
title_fullStr | Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
title_full_unstemmed | Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
title_short | Downregulation of the glucose transporter GLUT 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
title_sort | downregulation of the glucose transporter glut 1 in the cerebral microvasculature contributes to postoperative neurocognitive disorders in aged mice |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588063/ https://www.ncbi.nlm.nih.gov/pubmed/37858199 http://dx.doi.org/10.1186/s12974-023-02905-8 |
work_keys_str_mv | AT chenying downregulationoftheglucosetransporterglut1inthecerebralmicrovasculaturecontributestopostoperativeneurocognitivedisordersinagedmice AT joojin downregulationoftheglucosetransporterglut1inthecerebralmicrovasculaturecontributestopostoperativeneurocognitivedisordersinagedmice AT chujohnmantak downregulationoftheglucosetransporterglut1inthecerebralmicrovasculaturecontributestopostoperativeneurocognitivedisordersinagedmice AT changraymondchuenchung downregulationoftheglucosetransporterglut1inthecerebralmicrovasculaturecontributestopostoperativeneurocognitivedisordersinagedmice AT wonggordontinchun downregulationoftheglucosetransporterglut1inthecerebralmicrovasculaturecontributestopostoperativeneurocognitivedisordersinagedmice |