Cargando…
Oxidative stress induction by narasin augments doxorubicin’s efficacy in osteosarcoma
Complications and fata toxicity induced by chemotherapy are the main challenge for clinical management of osteosarcoma. The identification of agents that can augment the efficacy of chemotherapy at lower doses may represent an alternative therapeutic strategy. Narasin is a polyether antibiotic widel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588065/ https://www.ncbi.nlm.nih.gov/pubmed/37864240 http://dx.doi.org/10.1186/s40360-023-00695-6 |
Sumario: | Complications and fata toxicity induced by chemotherapy are the main challenge for clinical management of osteosarcoma. The identification of agents that can augment the efficacy of chemotherapy at lower doses may represent an alternative therapeutic strategy. Narasin is a polyether antibiotic widely used in veterinary medicine. In this study, we show that narasin is active against osteosarcoma cells at the same concentrations that are less toxic to normal cells. This effect is achieved by growth inhibition and apoptosis induction, which is mediated by oxidative stress and damage, and mitochondrial dysfunction. The antioxidant N-acetyl-l-cysteine (NAC) abolishes the anti-osteosarcoma activity. Importantly, narasin significantly augments doxorubicin’s efficacy in both osteosarcoma cell culturing system and subcutaneous implantation mouse model. The combination of narasin and doxorubicin at non-toxic doses completely arrests osteosarcoma growth in mice. Our results suggest that the concurrent administration of doxorubicin and narasin could present a viable alternative therapeutic approach for osteosarcoma. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40360-023-00695-6. |
---|