Cargando…
Performance of computational algorithms to deconvolve heterogeneous bulk ovarian tumor tissue depends on experimental factors
BACKGROUND: Single-cell gene expression profiling provides unique opportunities to understand tumor heterogeneity and the tumor microenvironment. Because of cost and feasibility, profiling bulk tumors remains the primary population-scale analytical strategy. Many algorithms can deconvolve these tumo...
Autores principales: | Hippen, Ariel A., Omran, Dalia K., Weber, Lukas M., Jung, Euihye, Drapkin, Ronny, Doherty, Jennifer A., Hicks, Stephanie C., Greene, Casey S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588129/ https://www.ncbi.nlm.nih.gov/pubmed/37864274 http://dx.doi.org/10.1186/s13059-023-03077-7 |
Ejemplares similares
-
Genetic demultiplexing of pooled single-cell RNA-sequencing samples in cancer facilitates effective experimental design
por: Weber, Lukas M, et al.
Publicado: (2021) -
Pathogenesis and heterogeneity of ovarian cancer
por: Kroeger, Paul T., et al.
Publicado: (2017) -
Deconvolving the contributions of cell-type heterogeneity on cortical gene expression
por: Patrick, Ellis, et al.
Publicado: (2020) -
Digitally deconvolving the tumor microenvironment
por: Aran, Dvir, et al.
Publicado: (2016) -
Smart Ocean: A New Fast Deconvolved Beamforming Algorithm for Multibeam Sonar
por: Huang, Jie, et al.
Publicado: (2018)