Cargando…
The predictive value of machine learning for mortality risk in patients with acute coronary syndromes: a systematic review and meta-analysis
BACKGROUND: Acute coronary syndromes (ACS) are the leading cause of global death. Optimizing mortality risk prediction and early identification of high-risk patients is essential for developing targeted prevention strategies. Many researchers have built machine learning (ML) models to predict the mo...
Autores principales: | Zhang, Xiaoxiao, Wang, Xi, Xu, Luxin, Liu, Jia, Ren, Peng, Wu, Huanlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588162/ https://www.ncbi.nlm.nih.gov/pubmed/37864271 http://dx.doi.org/10.1186/s40001-023-01027-4 |
Ejemplares similares
-
Use of machine learning models to predict in‐hospital mortality in patients with acute coronary syndrome
por: Li, Rong, et al.
Publicado: (2022) -
Value of Manchester Acute Coronary Syndromes Decision Rule in the Detection of Acute Coronary Syndrome; a Systematic Review and Meta-Analysis
por: Ramezani, Fatemeh, et al.
Publicado: (2018) -
Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers
por: Pieszko, Konrad, et al.
Publicado: (2019) -
Prognostic value of copeptin in patients with acute coronary syndrome: A systematic review and meta-analysis
por: Lu, Jiapeng, et al.
Publicado: (2020) -
Impact of multicomponent integrated care on mortality and hospitalization after acute coronary syndrome: a systematic review and meta-analysis
por: Hoo, Jia-Xin, et al.
Publicado: (2022)