Cargando…
Theory of Hot-Carrier Generation in Bimetallic Plasmonic Catalysts
[Image: see text] Bimetallic nanoreactors in which a plasmonic metal is used to funnel solar energy toward a catalytic metal have recently been studied experimentally, but a detailed theoretical understanding of these systems is lacking. Here, we present theoretical results of hot-carrier generation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588455/ https://www.ncbi.nlm.nih.gov/pubmed/37869558 http://dx.doi.org/10.1021/acsphotonics.3c00715 |
Sumario: | [Image: see text] Bimetallic nanoreactors in which a plasmonic metal is used to funnel solar energy toward a catalytic metal have recently been studied experimentally, but a detailed theoretical understanding of these systems is lacking. Here, we present theoretical results of hot-carrier generation rates of different Au–Pd nanoarchitectures. In particular, we study spherical core–shell nanoparticles with a Au core and a Pd shell as well as antenna–reactor systems consisting of a large Au nanoparticle that acts as an antenna and a smaller Pd satellite nanoparticle separated by a gap. In addition, we investigate an antenna–reactor system in which the satellite is a core–shell nanoparticle. Hot-carrier generation rates are obtained from an atomistic quantum-mechanical modeling technique which combines a solution of Maxwell’s equation with a tight-binding description of the nanoparticle electronic structure. We find that antenna–reactor systems exhibit significantly higher hot-carrier generation rates in the catalytic material than the core–shell system as a result of strong electric field enhancements associated with the gap between the antenna and the satellite. For these systems, we also study the dependence of the hot-carrier generation rate on the size of the gap, the radius of the antenna nanoparticle, and the direction of light polarization. Overall, we find a strong correlation between the calculated hot-carrier generation rates and the experimentally measured chemical activity for the different Au–Pd photocatalysts. Our insights pave the way toward a microscopic understanding of hot-carrier generation in heterogeneous nanostructures for photocatalysis and other energy-conversion applications. |
---|