Cargando…
Development of a Machine Learning-Based Prognostic Model for Hormone Receptor-Positive Breast Cancer Using Nine-Gene Expression Signature
BACKGROUND: Determining the prognosis of hormone receptor positive (HR(+)) breast cancer (BC), which accounts for 80% of all BCs, is critical in improving survival outcomes. Stratifying individuals at high risk of BC-related mortality and improving prognosis has been the focus of research for over a...
Autores principales: | Takeshita, Takashi, Iwase, Hirotaka, Wu, Rongrong, Ziazadeh, Danya, Yan, Li, Takabe, Kazuaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elmer Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588506/ https://www.ncbi.nlm.nih.gov/pubmed/37869243 http://dx.doi.org/10.14740/wjon1700 |
Ejemplares similares
-
GALNT1 Expression Is Associated with Angiogenesis and Is a Prognostic Biomarker for Breast Cancer in Adolescents and Young Adults (AYA)
por: Oshi, Masanori, et al.
Publicado: (2023) -
Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma
por: Yap, Josephine Yu Yan, et al.
Publicado: (2023) -
Lysophosphatidic Acid Receptor Signaling in the Human Breast Cancer Tumor Microenvironment Elicits Receptor-Dependent Effects on Tumor Progression
por: Benesch, Matthew G. K., et al.
Publicado: (2023) -
Clinical significance of monitoring ESR1 mutations in circulating cell-free DNA in estrogen receptor positive breast cancer patients
por: Takeshita, Takashi, et al.
Publicado: (2016) -
A nine-hub-gene signature of metabolic syndrome identified using machine learning algorithms and integrated bioinformatics
por: Liu, Guanzhi, et al.
Publicado: (2021)