Cargando…
Performance analysis of aspect-level sentiment classification task based on different deep learning models
Aspect-level sentiment classification task (ASCT) is a natural language processing task that aims to correctly identify specific aspects and determine their sentiment polarity from a given target sentence. Deep learning models have been proven to be effective in aspect-based sentiment classification...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588683/ https://www.ncbi.nlm.nih.gov/pubmed/37869455 http://dx.doi.org/10.7717/peerj-cs.1578 |
Sumario: | Aspect-level sentiment classification task (ASCT) is a natural language processing task that aims to correctly identify specific aspects and determine their sentiment polarity from a given target sentence. Deep learning models have been proven to be effective in aspect-based sentiment classification tasks, and the mainstream Aspect-level sentiment classification (ASC) models currently constructed generally assume that the training and test datasets are Gaussian distribution (e.g., the same language). Once the data distribution changes, the ASC model must be retrained on the new distribution data to achieve good performance. However, acquiring a large amount of labeled data again typically requires a lot of manpower and money, which seems unlikely, especially for the ASC task, as it requires aspect-level annotation. This article analyzes the performance of sequence-based models, graph-based convolutional neural networks, and pre-training language models on the aspect-level sentiment classification task using two sets of comment datasets in Chinese and English, from four perspectives: classification performance, performance with different aspect numbers, specific case performance, and computational cost. In this article, we design a state-of-the-art ASC-based classification method and conduct a systematic study on eight public standard English and Chinese datasets with various commonly used assessment measures that provide directions for cross-language migration. Finally, we discuss the limitations of the study as well as future research directions. |
---|