Cargando…
Performance analysis of aspect-level sentiment classification task based on different deep learning models
Aspect-level sentiment classification task (ASCT) is a natural language processing task that aims to correctly identify specific aspects and determine their sentiment polarity from a given target sentence. Deep learning models have been proven to be effective in aspect-based sentiment classification...
Autores principales: | Cao, Feifei, Huang, Xiaomin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588683/ https://www.ncbi.nlm.nih.gov/pubmed/37869455 http://dx.doi.org/10.7717/peerj-cs.1578 |
Ejemplares similares
-
Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems
por: Angamuthu, Swathi, et al.
Publicado: (2023) -
Context-based sentiment analysis on customer reviews using machine learning linear models
por: Chinnalagu, Anandan, et al.
Publicado: (2021) -
Sentiment classification for employees reviews using regression vector- stochastic gradient descent classifier (RV-SGDC)
por: Gaye, Babacar, et al.
Publicado: (2021) -
Enhancing the e-learning system based on a novel tasks’ classification load-balancing algorithm
por: Khedr, Ayman E., et al.
Publicado: (2021) -
A sentiment analysis approach for travel-related Chinese online review content
por: Li, Hanyun, et al.
Publicado: (2023)