Cargando…

A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices

Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Rongfeng, Roberts, Trevor D., Brinn, Rafaela M., Choi, Alexander A., Park, Ha H., Yan, Chang, Ondry, Justin C., Khorasani, Siamak, Masiello, David J., Xu, Ke, Alivisatos, A. Paul, Ginsberg, Naomi S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588942/
https://www.ncbi.nlm.nih.gov/pubmed/37862422
http://dx.doi.org/10.1126/sciadv.adh2410
_version_ 1785123687967490048
author Yuan, Rongfeng
Roberts, Trevor D.
Brinn, Rafaela M.
Choi, Alexander A.
Park, Ha H.
Yan, Chang
Ondry, Justin C.
Khorasani, Siamak
Masiello, David J.
Xu, Ke
Alivisatos, A. Paul
Ginsberg, Naomi S.
author_facet Yuan, Rongfeng
Roberts, Trevor D.
Brinn, Rafaela M.
Choi, Alexander A.
Park, Ha H.
Yan, Chang
Ondry, Justin C.
Khorasani, Siamak
Masiello, David J.
Xu, Ke
Alivisatos, A. Paul
Ginsberg, Naomi S.
author_sort Yuan, Rongfeng
collection PubMed
description Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide–core/cadmium sulfide–shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.
format Online
Article
Text
id pubmed-10588942
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-105889422023-10-21 A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices Yuan, Rongfeng Roberts, Trevor D. Brinn, Rafaela M. Choi, Alexander A. Park, Ha H. Yan, Chang Ondry, Justin C. Khorasani, Siamak Masiello, David J. Xu, Ke Alivisatos, A. Paul Ginsberg, Naomi S. Sci Adv Physical and Materials Sciences Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide–core/cadmium sulfide–shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design. American Association for the Advancement of Science 2023-10-20 /pmc/articles/PMC10588942/ /pubmed/37862422 http://dx.doi.org/10.1126/sciadv.adh2410 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Yuan, Rongfeng
Roberts, Trevor D.
Brinn, Rafaela M.
Choi, Alexander A.
Park, Ha H.
Yan, Chang
Ondry, Justin C.
Khorasani, Siamak
Masiello, David J.
Xu, Ke
Alivisatos, A. Paul
Ginsberg, Naomi S.
A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
title A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
title_full A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
title_fullStr A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
title_full_unstemmed A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
title_short A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
title_sort composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588942/
https://www.ncbi.nlm.nih.gov/pubmed/37862422
http://dx.doi.org/10.1126/sciadv.adh2410
work_keys_str_mv AT yuanrongfeng acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT robertstrevord acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT brinnrafaelam acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT choialexandera acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT parkhah acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT yanchang acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT ondryjustinc acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT khorasanisiamak acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT masiellodavidj acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT xuke acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT alivisatosapaul acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT ginsbergnaomis acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT yuanrongfeng compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT robertstrevord compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT brinnrafaelam compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT choialexandera compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT parkhah compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT yanchang compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT ondryjustinc compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT khorasanisiamak compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT masiellodavidj compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT xuke compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT alivisatosapaul compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices
AT ginsbergnaomis compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices