Cargando…
A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices
Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD s...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588942/ https://www.ncbi.nlm.nih.gov/pubmed/37862422 http://dx.doi.org/10.1126/sciadv.adh2410 |
_version_ | 1785123687967490048 |
---|---|
author | Yuan, Rongfeng Roberts, Trevor D. Brinn, Rafaela M. Choi, Alexander A. Park, Ha H. Yan, Chang Ondry, Justin C. Khorasani, Siamak Masiello, David J. Xu, Ke Alivisatos, A. Paul Ginsberg, Naomi S. |
author_facet | Yuan, Rongfeng Roberts, Trevor D. Brinn, Rafaela M. Choi, Alexander A. Park, Ha H. Yan, Chang Ondry, Justin C. Khorasani, Siamak Masiello, David J. Xu, Ke Alivisatos, A. Paul Ginsberg, Naomi S. |
author_sort | Yuan, Rongfeng |
collection | PubMed |
description | Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide–core/cadmium sulfide–shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design. |
format | Online Article Text |
id | pubmed-10588942 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105889422023-10-21 A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices Yuan, Rongfeng Roberts, Trevor D. Brinn, Rafaela M. Choi, Alexander A. Park, Ha H. Yan, Chang Ondry, Justin C. Khorasani, Siamak Masiello, David J. Xu, Ke Alivisatos, A. Paul Ginsberg, Naomi S. Sci Adv Physical and Materials Sciences Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide–core/cadmium sulfide–shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design. American Association for the Advancement of Science 2023-10-20 /pmc/articles/PMC10588942/ /pubmed/37862422 http://dx.doi.org/10.1126/sciadv.adh2410 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Yuan, Rongfeng Roberts, Trevor D. Brinn, Rafaela M. Choi, Alexander A. Park, Ha H. Yan, Chang Ondry, Justin C. Khorasani, Siamak Masiello, David J. Xu, Ke Alivisatos, A. Paul Ginsberg, Naomi S. A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
title | A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
title_full | A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
title_fullStr | A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
title_full_unstemmed | A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
title_short | A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
title_sort | composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588942/ https://www.ncbi.nlm.nih.gov/pubmed/37862422 http://dx.doi.org/10.1126/sciadv.adh2410 |
work_keys_str_mv | AT yuanrongfeng acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT robertstrevord acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT brinnrafaelam acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT choialexandera acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT parkhah acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT yanchang acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT ondryjustinc acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT khorasanisiamak acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT masiellodavidj acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT xuke acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT alivisatosapaul acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT ginsbergnaomis acompositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT yuanrongfeng compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT robertstrevord compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT brinnrafaelam compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT choialexandera compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT parkhah compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT yanchang compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT ondryjustinc compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT khorasanisiamak compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT masiellodavidj compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT xuke compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT alivisatosapaul compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices AT ginsbergnaomis compositeelectrodynamicmechanismtoreconcilespatiotemporallyresolvedexcitontransportinquantumdotsuperlattices |