Cargando…
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
BACKGROUND: Q.Clear, a Bayesian penalized likelihood reconstruction algorithm, has shown high potential in improving quantitation accuracy in PET systems. The Q.Clear algorithm controls noise during the iterative reconstruction through a β penalization factor. This study aimed to determine the optim...
Autores principales: | Lysvik, Elisabeth Kirkeby, Mikalsen, Lars Tore Gyland, Rootwelt-Revheim, Mona-Elisabeth, Emblem, Kyrre Eeg, Hjørnevik, Trine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589167/ https://www.ncbi.nlm.nih.gov/pubmed/37861929 http://dx.doi.org/10.1186/s40658-023-00584-1 |
Ejemplares similares
-
The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR
por: Tian, Defeng, et al.
Publicado: (2022) -
Impact of the Q.Clear reconstruction algorithm on the interpretation of PET/CT images in patients with lymphoma
por: Wyrzykowski, Michał, et al.
Publicado: (2020) -
Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies
por: Ribeiro, Daniela, et al.
Publicado: (2021) -
Bayesian penalised likelihood reconstruction (Q.Clear) of (18)F-fluciclovine PET for imaging of recurrent prostate cancer: semi-quantitative and clinical evaluation
por: Teoh, Eugene J, et al.
Publicado: (2018) -
Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
por: Texte, Edgar, et al.
Publicado: (2020)