Cargando…
Preclinical evaluation of a tool for insertion force measurements in cochlear implant surgery
PURPOSE: Trauma that may be inflicted to the inner ear (cochlea) during the insertion of an electrode array (EA) in cochlear implant (CI) surgery can significantly decrease the hearing outcome of patients with residual hearing. Interaction forces between the EA and the cochlea are a promising indica...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589184/ https://www.ncbi.nlm.nih.gov/pubmed/37310560 http://dx.doi.org/10.1007/s11548-023-02975-2 |
Sumario: | PURPOSE: Trauma that may be inflicted to the inner ear (cochlea) during the insertion of an electrode array (EA) in cochlear implant (CI) surgery can significantly decrease the hearing outcome of patients with residual hearing. Interaction forces between the EA and the cochlea are a promising indicator for the likelihood of intracochlear trauma. However, insertion forces have only been measured in laboratory setups. We recently developed a tool to measure the insertion force during CI surgery. Here, we present the first ex vivo evaluation of our tool with a focus on usability in the standard surgical workflow. METHODS: Two CI surgeons inserted commercially available EAs into three temporal bone specimens. The insertion force and the orientation of the tool were recorded together with camera footage. The surgeons answered a questionnaire after each insertion to evaluate the surgical workflow with respect to CI surgery. RESULTS: The EA insertion using our tool was rated successful in all 18 trials. The surgical workflow was evaluated to be equivalent to standard CI surgery. Minor handling challenges can be overcome through surgeon training. The peak insertion forces were 62.4 mN ± 26.7 mN on average. Peak forces significantly correlated to the final electrode insertion depth, supporting the assumption that the measured forces mainly correspond to intracochlear events and not extracochlear friction. Gravity-induced forces of up to 28.8 mN were removed from the signal, illustrating the importance of the compensation of such forces in manual surgery. CONCLUSION: The results show that the tool is ready for intraoperative use. In vivo insertion force data will improve the interpretability of experimental results in laboratory settings. The implementation of live insertion force feedback to surgeons could further improve residual hearing preservation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11548-023-02975-2. |
---|