Cargando…
A future location prediction method based on lightweight LSTM with hyperparamater optimization
In this study, we presented a method for future location prediction based on machine learning over geopositioning data sets. There are large amounts of geopositioning data sets collected by mobile devices mainly due to modern geopositioning systems such as GPS, GLONASS and Galileo. Based on these ge...
Autor principal: | Song, Ha Yoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589241/ https://www.ncbi.nlm.nih.gov/pubmed/37863968 http://dx.doi.org/10.1038/s41598-023-44166-8 |
Ejemplares similares
-
Lightweight LSTM-Based Adaptive CQI Feedback Scheme for IoT Devices
por: Han, Noel, et al.
Publicado: (2023) -
An LSTM-Method-Based Availability Prediction for Optimized Offloading in Mobile Edges
por: Cui, Chaoxiong, et al.
Publicado: (2019) -
Strip thickness prediction method based on improved border collie optimizing LSTM
por: Sun, Lijie, et al.
Publicado: (2022) -
Snake optimizer LSTM-based UWB positioning method for unmanned crane
por: Wang, Li, et al.
Publicado: (2023) -
Performance Degradation Prediction Using LSTM with Optimized Parameters
por: Hu, Yawei, et al.
Publicado: (2022)