Cargando…
Binding affinity predictions with hybrid quantum-classical convolutional neural networks
Central in drug design is the identification of biomolecules that uniquely and robustly bind to a target protein, while minimizing their interactions with others. Accordingly, precise binding affinity prediction, enabling the accurate selection of suitable candidates from an extensive pool of potent...
Autores principales: | Domingo, L., Djukic, M., Johnson, C., Borondo, F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589342/ https://www.ncbi.nlm.nih.gov/pubmed/37864075 http://dx.doi.org/10.1038/s41598-023-45269-y |
Ejemplares similares
-
Prediction of drug–target binding affinity using similarity-based convolutional neural network
por: Shim, Jooyong, et al.
Publicado: (2021) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
Exploring hybrid quantum-classical neural networks for particle tracking
por: Rieger, Carla
Publicado: (2020) -
Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities
por: Son, Jeongtae, et al.
Publicado: (2021) -
Hybrid_DBP: Prediction of DNA-binding proteins using hybrid features and convolutional neural networks
por: Yu, Shaoyou, et al.
Publicado: (2022)