Cargando…
High performance platinum contacts on high-flux CdZnTe detectors
The need for direct X-ray detection under high photon flux with moderate or high energies (30–100 keV range) has strongly increased with the rise of the 4th Generation Synchrotron Light Sources, characterised by extremely brilliant beamlines, and of other applications such as spectral computed tomog...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589347/ https://www.ncbi.nlm.nih.gov/pubmed/37864099 http://dx.doi.org/10.1038/s41598-023-45331-9 |
Sumario: | The need for direct X-ray detection under high photon flux with moderate or high energies (30–100 keV range) has strongly increased with the rise of the 4th Generation Synchrotron Light Sources, characterised by extremely brilliant beamlines, and of other applications such as spectral computed tomography in medicine and non-destructive tests for industry. The novel Cadmium Zinc Telluride (CZT) developed by Redlen Technologies can be considered the reference material for high-flux applications (HF-CZT). The enhanced charge transport properties of the holes allow the mitigation of the effects of radiation induced polarization phenomena, typically observed in standard CZT materials (LF-CZT) under high photon flux. However, standard LF-CZT electrical contacts led to inacceptable high dark leakage currents on HF-CZT devices. In this work, a detailed study on the characteristics of new optimized sputtered platinum electrical contacts on HF-CZT detectors is reported. The results from electrical and spectroscopic investigations, showed the best performances on HF-CZT detectors with platinum anode, coupled with both platinum or gold cathode. The morphology, structure, and composition of Pt/CZT contact have been analysed by means of Transmission Electron Microscopy (TEM) on microscopic lamellas obtained by Focused Ion Beam (FIB), highlighting the presence of CdTeO(3) oxide at the metal semiconductor interface. |
---|