Cargando…
Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy
Performing lifespan assays with Caenorhabditis elegans (C. elegans) nematodes manually is a time consuming and laborious task. Therefore, automation is necessary to increase productivity. In this paper, we propose a method to automate the counting of live C. elegans using deep learning. The survival...
Autores principales: | García-Garví, Antonio, Layana-Castro, Pablo E., Puchalt, Joan Carles, Sánchez-Salmerón, Antonio-José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589381/ https://www.ncbi.nlm.nih.gov/pubmed/37867965 http://dx.doi.org/10.1016/j.csbj.2023.10.007 |
Ejemplares similares
-
Towards Lifespan Automation for Caenorhabditis elegans Based on Deep Learning: Analysing Convolutional and Recurrent Neural Networks for Dead or Live Classification
por: García Garví, Antonio, et al.
Publicado: (2021) -
Caenorhabditis elegans Multi-Tracker Based on a Modified Skeleton Algorithm
por: Layana Castro, Pablo E., et al.
Publicado: (2021) -
Reducing Results Variance in Lifespan Machines: An Analysis of the Influence of Vibrotaxis on Wild-Type Caenorhabditis elegans for the Death Criterion
por: Puchalt, Joan Carles, et al.
Publicado: (2020) -
Improving skeleton algorithm for helping Caenorhabditis elegans trackers
por: Layana Castro, Pablo E., et al.
Publicado: (2020) -
Towards generalization for Caenorhabditis elegans detection
por: Escobar-Benavides, Santiago, et al.
Publicado: (2023)