Cargando…

Role of MCP-1/CCR2 axis in renal fibrosis: Mechanisms and therapeutic targeting

Renal fibrosis is a common pathological manifestation in various chronic kidney diseases. Inflammation plays a central role in renal fibrosis development. Owing to their significant participation in inflammation and autoimmunity, chemokines have always been the hot spot and focus of scientific resea...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Shiyang, Yao, Lan, Li, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589562/
https://www.ncbi.nlm.nih.gov/pubmed/37861543
http://dx.doi.org/10.1097/MD.0000000000035613
Descripción
Sumario:Renal fibrosis is a common pathological manifestation in various chronic kidney diseases. Inflammation plays a central role in renal fibrosis development. Owing to their significant participation in inflammation and autoimmunity, chemokines have always been the hot spot and focus of scientific research and clinical intervention. Among the chemokines, monocyte chemoattractant protein-1 (MCP-1), also known as C-C motif chemokine ligand 2, together with its main receptor C–C chemokine receptor type 2 (CCR2) are important chemokines in renal fibrosis. The MCP-1/CCR2 axis is activated when MCP-1 binds to CCR2. Activation of MCP-1/CCR2 axis can induce chemotaxis and activation of inflammatory cells, and initiate a series of signaling cascades in renal fibrosis. It mediates and promotes renal fibrosis by recruiting monocyte, promoting the activation and transdifferentiation of macrophages. This review summarizes the complex physical processes of MCP-1/CCR2 axis in renal fibrosis and addresses its general mechanism in renal fibrosis by using specific examples, together with the progress of targeting MCP-1/CCR2 in renal fibrosis with a view to providing a new direction for renal fibrosis treatment.