Cargando…

Small RNA sequencing of exosomal microRNAs reveals differential expression of microRNAs in preeclampsia

Preeclampsia (PE) is one of the most common hypertensive disorders of pregnancy. It is a dangerous condition with a high mortality rate in mothers and fetuses and is associated with a lack of early diagnosis and effective treatment. While the etiology of the disease is complex and obscure, it is now...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Hui, Tao, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589583/
https://www.ncbi.nlm.nih.gov/pubmed/37861520
http://dx.doi.org/10.1097/MD.0000000000035597
Descripción
Sumario:Preeclampsia (PE) is one of the most common hypertensive disorders of pregnancy. It is a dangerous condition with a high mortality rate in mothers and fetuses and is associated with a lack of early diagnosis and effective treatment. While the etiology of the disease is complex and obscure, it is now clear that the placenta is central to disease progression. Exosomal microRNAs (miRNAs) are possible mediators that regulate placenta-related physiological and pathological processes. Placental mesenchymal stem cells have considerable potential to help us understand the pathogenesis and treatment of pregnancy-related diseases. Here, we investigate the exosomal miRNA profiles of human placenta-derived mesenchymal stem cells between healthy pregnant women and those with PE. We performed small RNA sequencing to obtain miRNA profiles, and conducted enrichment analysis of the miRNA target genes to identify differentially expressed miRNAs associated with PE. Overall, we detected 1795 miRNAs; among them, 206 were differentially expressed in women with PE, including 35 upregulated and 171 downregulated miRNAs, when compared with healthy pregnant women. Moreover, we identified possible functions and pathways associated with PE, including angiogenesis, cell proliferation, migration and invasion, and the coagulation-fibrinolysis balance. Eventually, we proposed hsa-miR-675-5p, hsa-miR-3614-5p, and hsa-miR-615-5p as potential regulators of the pathogenesis of PE, and constructed a miRNA-target gene network. Our study identifies possible candidate biomarkers for the diagnosis of PE, and introduces a new direction for further understanding the pathogenesis of PE.