Cargando…

A forward modeling approach to analyzing galaxy clustering with SimBIG

We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the SimBIG forward modeling framework. SimBIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on sm...

Descripción completa

Detalles Bibliográficos
Autores principales: Hahn, ChangHoon, Eickenberg, Michael, Ho, Shirley, Hou, Jiamin, Lemos, Pablo, Massara, Elena, Modi, Chirag, Moradinezhad Dizgah, Azadeh, Blancard, Bruno Régaldo-Saint, Abidi, Muntazir M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589614/
https://www.ncbi.nlm.nih.gov/pubmed/37819978
http://dx.doi.org/10.1073/pnas.2218810120
_version_ 1785123829707702272
author Hahn, ChangHoon
Eickenberg, Michael
Ho, Shirley
Hou, Jiamin
Lemos, Pablo
Massara, Elena
Modi, Chirag
Moradinezhad Dizgah, Azadeh
Blancard, Bruno Régaldo-Saint
Abidi, Muntazir M.
author_facet Hahn, ChangHoon
Eickenberg, Michael
Ho, Shirley
Hou, Jiamin
Lemos, Pablo
Massara, Elena
Modi, Chirag
Moradinezhad Dizgah, Azadeh
Blancard, Bruno Régaldo-Saint
Abidi, Muntazir M.
author_sort Hahn, ChangHoon
collection PubMed
description We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the SimBIG forward modeling framework. SimBIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on small nonlinear scales. In this work, we apply SimBIG to the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxy sample and analyze the power spectrum, [Formula: see text] , to [Formula: see text]. We construct 20,000 simulated galaxy samples using our forward model, which is based on 2,000 high-resolution Quijote [Formula: see text]-body simulations and includes detailed survey realism for a more complete treatment of observational systematics. We then conduct SBI by training normalizing flows using the simulated samples and infer the posterior distribution of [Formula: see text] CDM cosmological parameters: [Formula: see text]. We derive significant constraints on [Formula: see text] and [Formula: see text] , which are consistent with previous works. Our constraint on [Formula: see text] is 27% more precise than standard [Formula: see text] analyses because we exploit additional cosmological information on nonlinear scales beyond the limit of current analytic models, [Formula: see text]. This improvement is equivalent to the statistical gain expected from a standard [Formula: see text] analysis of galaxy sample [Formula: see text] 60% larger than CMASS. While we focus on [Formula: see text] in this work for validation and comparison to the literature, SimBIG provides a framework for analyzing galaxy clustering using any summary statistic. We expect further improvements on cosmological constraints from subsequent SimBIG analyses of summary statistics beyond [Formula: see text].
format Online
Article
Text
id pubmed-10589614
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-105896142023-10-22 A forward modeling approach to analyzing galaxy clustering with SimBIG Hahn, ChangHoon Eickenberg, Michael Ho, Shirley Hou, Jiamin Lemos, Pablo Massara, Elena Modi, Chirag Moradinezhad Dizgah, Azadeh Blancard, Bruno Régaldo-Saint Abidi, Muntazir M. Proc Natl Acad Sci U S A Physical Sciences We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the SimBIG forward modeling framework. SimBIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on small nonlinear scales. In this work, we apply SimBIG to the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxy sample and analyze the power spectrum, [Formula: see text] , to [Formula: see text]. We construct 20,000 simulated galaxy samples using our forward model, which is based on 2,000 high-resolution Quijote [Formula: see text]-body simulations and includes detailed survey realism for a more complete treatment of observational systematics. We then conduct SBI by training normalizing flows using the simulated samples and infer the posterior distribution of [Formula: see text] CDM cosmological parameters: [Formula: see text]. We derive significant constraints on [Formula: see text] and [Formula: see text] , which are consistent with previous works. Our constraint on [Formula: see text] is 27% more precise than standard [Formula: see text] analyses because we exploit additional cosmological information on nonlinear scales beyond the limit of current analytic models, [Formula: see text]. This improvement is equivalent to the statistical gain expected from a standard [Formula: see text] analysis of galaxy sample [Formula: see text] 60% larger than CMASS. While we focus on [Formula: see text] in this work for validation and comparison to the literature, SimBIG provides a framework for analyzing galaxy clustering using any summary statistic. We expect further improvements on cosmological constraints from subsequent SimBIG analyses of summary statistics beyond [Formula: see text]. National Academy of Sciences 2023-10-11 2023-10-17 /pmc/articles/PMC10589614/ /pubmed/37819978 http://dx.doi.org/10.1073/pnas.2218810120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Physical Sciences
Hahn, ChangHoon
Eickenberg, Michael
Ho, Shirley
Hou, Jiamin
Lemos, Pablo
Massara, Elena
Modi, Chirag
Moradinezhad Dizgah, Azadeh
Blancard, Bruno Régaldo-Saint
Abidi, Muntazir M.
A forward modeling approach to analyzing galaxy clustering with SimBIG
title A forward modeling approach to analyzing galaxy clustering with SimBIG
title_full A forward modeling approach to analyzing galaxy clustering with SimBIG
title_fullStr A forward modeling approach to analyzing galaxy clustering with SimBIG
title_full_unstemmed A forward modeling approach to analyzing galaxy clustering with SimBIG
title_short A forward modeling approach to analyzing galaxy clustering with SimBIG
title_sort forward modeling approach to analyzing galaxy clustering with simbig
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589614/
https://www.ncbi.nlm.nih.gov/pubmed/37819978
http://dx.doi.org/10.1073/pnas.2218810120
work_keys_str_mv AT hahnchanghoon aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT eickenbergmichael aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT hoshirley aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT houjiamin aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT lemospablo aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT massaraelena aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT modichirag aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT moradinezhaddizgahazadeh aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT blancardbrunoregaldosaint aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT abidimuntazirm aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT hahnchanghoon forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT eickenbergmichael forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT hoshirley forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT houjiamin forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT lemospablo forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT massaraelena forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT modichirag forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT moradinezhaddizgahazadeh forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT blancardbrunoregaldosaint forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig
AT abidimuntazirm forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig