Cargando…
A forward modeling approach to analyzing galaxy clustering with SimBIG
We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the SimBIG forward modeling framework. SimBIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on sm...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589614/ https://www.ncbi.nlm.nih.gov/pubmed/37819978 http://dx.doi.org/10.1073/pnas.2218810120 |
_version_ | 1785123829707702272 |
---|---|
author | Hahn, ChangHoon Eickenberg, Michael Ho, Shirley Hou, Jiamin Lemos, Pablo Massara, Elena Modi, Chirag Moradinezhad Dizgah, Azadeh Blancard, Bruno Régaldo-Saint Abidi, Muntazir M. |
author_facet | Hahn, ChangHoon Eickenberg, Michael Ho, Shirley Hou, Jiamin Lemos, Pablo Massara, Elena Modi, Chirag Moradinezhad Dizgah, Azadeh Blancard, Bruno Régaldo-Saint Abidi, Muntazir M. |
author_sort | Hahn, ChangHoon |
collection | PubMed |
description | We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the SimBIG forward modeling framework. SimBIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on small nonlinear scales. In this work, we apply SimBIG to the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxy sample and analyze the power spectrum, [Formula: see text] , to [Formula: see text]. We construct 20,000 simulated galaxy samples using our forward model, which is based on 2,000 high-resolution Quijote [Formula: see text]-body simulations and includes detailed survey realism for a more complete treatment of observational systematics. We then conduct SBI by training normalizing flows using the simulated samples and infer the posterior distribution of [Formula: see text] CDM cosmological parameters: [Formula: see text]. We derive significant constraints on [Formula: see text] and [Formula: see text] , which are consistent with previous works. Our constraint on [Formula: see text] is 27% more precise than standard [Formula: see text] analyses because we exploit additional cosmological information on nonlinear scales beyond the limit of current analytic models, [Formula: see text]. This improvement is equivalent to the statistical gain expected from a standard [Formula: see text] analysis of galaxy sample [Formula: see text] 60% larger than CMASS. While we focus on [Formula: see text] in this work for validation and comparison to the literature, SimBIG provides a framework for analyzing galaxy clustering using any summary statistic. We expect further improvements on cosmological constraints from subsequent SimBIG analyses of summary statistics beyond [Formula: see text]. |
format | Online Article Text |
id | pubmed-10589614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-105896142023-10-22 A forward modeling approach to analyzing galaxy clustering with SimBIG Hahn, ChangHoon Eickenberg, Michael Ho, Shirley Hou, Jiamin Lemos, Pablo Massara, Elena Modi, Chirag Moradinezhad Dizgah, Azadeh Blancard, Bruno Régaldo-Saint Abidi, Muntazir M. Proc Natl Acad Sci U S A Physical Sciences We present cosmological constraints from a simulation-based inference (SBI) analysis of galaxy clustering from the SimBIG forward modeling framework. SimBIG leverages the predictive power of high-fidelity simulations and provides an inference framework that can extract cosmological information on small nonlinear scales. In this work, we apply SimBIG to the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxy sample and analyze the power spectrum, [Formula: see text] , to [Formula: see text]. We construct 20,000 simulated galaxy samples using our forward model, which is based on 2,000 high-resolution Quijote [Formula: see text]-body simulations and includes detailed survey realism for a more complete treatment of observational systematics. We then conduct SBI by training normalizing flows using the simulated samples and infer the posterior distribution of [Formula: see text] CDM cosmological parameters: [Formula: see text]. We derive significant constraints on [Formula: see text] and [Formula: see text] , which are consistent with previous works. Our constraint on [Formula: see text] is 27% more precise than standard [Formula: see text] analyses because we exploit additional cosmological information on nonlinear scales beyond the limit of current analytic models, [Formula: see text]. This improvement is equivalent to the statistical gain expected from a standard [Formula: see text] analysis of galaxy sample [Formula: see text] 60% larger than CMASS. While we focus on [Formula: see text] in this work for validation and comparison to the literature, SimBIG provides a framework for analyzing galaxy clustering using any summary statistic. We expect further improvements on cosmological constraints from subsequent SimBIG analyses of summary statistics beyond [Formula: see text]. National Academy of Sciences 2023-10-11 2023-10-17 /pmc/articles/PMC10589614/ /pubmed/37819978 http://dx.doi.org/10.1073/pnas.2218810120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Physical Sciences Hahn, ChangHoon Eickenberg, Michael Ho, Shirley Hou, Jiamin Lemos, Pablo Massara, Elena Modi, Chirag Moradinezhad Dizgah, Azadeh Blancard, Bruno Régaldo-Saint Abidi, Muntazir M. A forward modeling approach to analyzing galaxy clustering with SimBIG |
title | A forward modeling approach to analyzing galaxy clustering with SimBIG |
title_full | A forward modeling approach to analyzing galaxy clustering with SimBIG |
title_fullStr | A forward modeling approach to analyzing galaxy clustering with SimBIG |
title_full_unstemmed | A forward modeling approach to analyzing galaxy clustering with SimBIG |
title_short | A forward modeling approach to analyzing galaxy clustering with SimBIG |
title_sort | forward modeling approach to analyzing galaxy clustering with simbig |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589614/ https://www.ncbi.nlm.nih.gov/pubmed/37819978 http://dx.doi.org/10.1073/pnas.2218810120 |
work_keys_str_mv | AT hahnchanghoon aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT eickenbergmichael aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT hoshirley aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT houjiamin aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT lemospablo aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT massaraelena aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT modichirag aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT moradinezhaddizgahazadeh aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT blancardbrunoregaldosaint aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT abidimuntazirm aforwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT hahnchanghoon forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT eickenbergmichael forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT hoshirley forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT houjiamin forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT lemospablo forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT massaraelena forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT modichirag forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT moradinezhaddizgahazadeh forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT blancardbrunoregaldosaint forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig AT abidimuntazirm forwardmodelingapproachtoanalyzinggalaxyclusteringwithsimbig |