Cargando…
A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning
Knowledge of odor thresholds is very important for the perfume industry. Due to the difficulty associated with measuring odor thresholds, empirical models capable of estimating these values can be an invaluable contribution to the field. This work developed a framework based on scientific machine le...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589844/ https://www.ncbi.nlm.nih.gov/pubmed/37867888 http://dx.doi.org/10.1016/j.heliyon.2023.e20813 |
_version_ | 1785123871414812672 |
---|---|
author | Oliveira, Luis M.C. Santana, Vinícius V. Rodrigues, Alírio E. Ribeiro, Ana M. B. R. Nogueira, Idelfonso |
author_facet | Oliveira, Luis M.C. Santana, Vinícius V. Rodrigues, Alírio E. Ribeiro, Ana M. B. R. Nogueira, Idelfonso |
author_sort | Oliveira, Luis M.C. |
collection | PubMed |
description | Knowledge of odor thresholds is very important for the perfume industry. Due to the difficulty associated with measuring odor thresholds, empirical models capable of estimating these values can be an invaluable contribution to the field. This work developed a framework based on scientific machine learning strategies. A transfer learning-based strategy was devised, where information from a graph convolutional network predicting semantic odor descriptors was used as input data for the feedforward neural network responsible for estimating odor thresholds for chemical substances based on their molecular structures. The predictive performance of this model was compared to a benchmark odor threshold prediction model based on molecular structures that did not utilize transfer learning. Furthermore, the prediction was compared to a correlation previously proposed in the literature and a dummy regressor. Results demonstrated that the transfer learning-based strategy displayed a better predictive performance, suggesting this technique can be useful for predicting odor thresholds. |
format | Online Article Text |
id | pubmed-10589844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105898442023-10-22 A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning Oliveira, Luis M.C. Santana, Vinícius V. Rodrigues, Alírio E. Ribeiro, Ana M. B. R. Nogueira, Idelfonso Heliyon Research Article Knowledge of odor thresholds is very important for the perfume industry. Due to the difficulty associated with measuring odor thresholds, empirical models capable of estimating these values can be an invaluable contribution to the field. This work developed a framework based on scientific machine learning strategies. A transfer learning-based strategy was devised, where information from a graph convolutional network predicting semantic odor descriptors was used as input data for the feedforward neural network responsible for estimating odor thresholds for chemical substances based on their molecular structures. The predictive performance of this model was compared to a benchmark odor threshold prediction model based on molecular structures that did not utilize transfer learning. Furthermore, the prediction was compared to a correlation previously proposed in the literature and a dummy regressor. Results demonstrated that the transfer learning-based strategy displayed a better predictive performance, suggesting this technique can be useful for predicting odor thresholds. Elsevier 2023-10-10 /pmc/articles/PMC10589844/ /pubmed/37867888 http://dx.doi.org/10.1016/j.heliyon.2023.e20813 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Oliveira, Luis M.C. Santana, Vinícius V. Rodrigues, Alírio E. Ribeiro, Ana M. B. R. Nogueira, Idelfonso A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
title | A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
title_full | A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
title_fullStr | A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
title_full_unstemmed | A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
title_short | A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
title_sort | framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589844/ https://www.ncbi.nlm.nih.gov/pubmed/37867888 http://dx.doi.org/10.1016/j.heliyon.2023.e20813 |
work_keys_str_mv | AT oliveiraluismc aframeworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT santanaviniciusv aframeworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT rodriguesalirioe aframeworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT ribeiroanam aframeworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT brnogueiraidelfonso aframeworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT oliveiraluismc frameworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT santanaviniciusv frameworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT rodriguesalirioe frameworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT ribeiroanam frameworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning AT brnogueiraidelfonso frameworkforpredictingodorthresholdvaluesofperfumesbyscientificmachinelearningandtransferlearning |