Cargando…
A framework for predicting odor threshold values of perfumes by scientific machine learning and transfer learning
Knowledge of odor thresholds is very important for the perfume industry. Due to the difficulty associated with measuring odor thresholds, empirical models capable of estimating these values can be an invaluable contribution to the field. This work developed a framework based on scientific machine le...
Autores principales: | Oliveira, Luis M.C., Santana, Vinícius V., Rodrigues, Alírio E., Ribeiro, Ana M., B. R. Nogueira, Idelfonso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589844/ https://www.ncbi.nlm.nih.gov/pubmed/37867888 http://dx.doi.org/10.1016/j.heliyon.2023.e20813 |
Ejemplares similares
-
Perfume and Flavor Engineering: A Chemical Engineering Perspective
por: Rodrigues, Alírio E., et al.
Publicado: (2021) -
Generating Flavor
Molecules Using Scientific Machine
Learning
por: Queiroz, Luana P., et al.
Publicado: (2023) -
A Reinforcement Learning Framework to Discover Natural Flavor Molecules
por: Queiroz, Luana P., et al.
Publicado: (2023) -
Novel Framework for Simulated Moving Bed Reactor Optimization
Based on Deep Neural Network Models and Metaheuristic Optimizers:
An Approach with Optimality Guarantee
por: Santana, Vinícius V., et al.
Publicado: (2023) -
Perfumes
Publicado: (1858)