Cargando…

Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus

The risk posed by offshore wind farms to seabirds through collisions with turbine blades is greatly influenced by species-specific flight behaviour. Bird-borne telemetry devices may provide improved measurement of aspects of bird behaviour, notably individual and behaviour specific flight heights. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Johnston, Daniel T., Thaxter, Chris B., Boersch-Supan, Philipp H., Davies, Jacob G., Clewley, Gary D., Green, Ros M. W., Shamoun-Baranes, Judy, Cook, Aonghais S. C. P., Burton, Niall H. K., Humphreys, Elizabeth M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590026/
https://www.ncbi.nlm.nih.gov/pubmed/37865783
http://dx.doi.org/10.1186/s40462-023-00431-z
_version_ 1785123911773454336
author Johnston, Daniel T.
Thaxter, Chris B.
Boersch-Supan, Philipp H.
Davies, Jacob G.
Clewley, Gary D.
Green, Ros M. W.
Shamoun-Baranes, Judy
Cook, Aonghais S. C. P.
Burton, Niall H. K.
Humphreys, Elizabeth M.
author_facet Johnston, Daniel T.
Thaxter, Chris B.
Boersch-Supan, Philipp H.
Davies, Jacob G.
Clewley, Gary D.
Green, Ros M. W.
Shamoun-Baranes, Judy
Cook, Aonghais S. C. P.
Burton, Niall H. K.
Humphreys, Elizabeth M.
author_sort Johnston, Daniel T.
collection PubMed
description The risk posed by offshore wind farms to seabirds through collisions with turbine blades is greatly influenced by species-specific flight behaviour. Bird-borne telemetry devices may provide improved measurement of aspects of bird behaviour, notably individual and behaviour specific flight heights. However, use of data from devices that use the GPS or barometric altimeters in the gathering of flight height data is nevertheless constrained by a current lack of understanding of the error and calibration of these methods. Uncertainty remains regarding the degree to which errors associated with these methods can affect recorded flight heights, which may in turn have a significant influence on estimates of collision risk produced by Collision Risk Models (CRMs), which incorporate flight height distribution as an input. Using GPS/barometric altimeter tagged Lesser Black-backed Gulls Larus fuscus from two breeding colonies in the UK, we examine comparative flight heights produced by these devices, and their associated errors. We present a novel method of calibrating barometric altimeters using behaviour characterised from GPS data and open-source modelled atmospheric pressure. We examine the magnitude of difference between offshore flight heights produced from GPS and altimeters, comparing these measurements across sampling schedules, colonies, and years. We found flight heights produced from altimeter data to be significantly, although not consistently, higher than those produced from GPS data. This relationship was sustained across differing sampling schedules of five minutes and of 10 s, and between study colonies. We found the magnitude of difference between GPS and altimeter derived flight heights to also vary between individuals, potentially related to the robustness of calibration factors used. Collision estimates for theoretical wind farms were consequently significantly higher when using flight height distributions generated from barometric altimeters. Improving confidence in telemetry-obtained flight height distributions, which may then be applied to CRMs, requires sources of errors in these measurements to be identified. Our study improves knowledge of the calibration processes for flight height measurements based on telemetry data, with the aim of increasing confidence in their use in future assessments of collision risk and reducing the uncertainty over predicted mortality associated with wind farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40462-023-00431-z.
format Online
Article
Text
id pubmed-10590026
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-105900262023-10-22 Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus Johnston, Daniel T. Thaxter, Chris B. Boersch-Supan, Philipp H. Davies, Jacob G. Clewley, Gary D. Green, Ros M. W. Shamoun-Baranes, Judy Cook, Aonghais S. C. P. Burton, Niall H. K. Humphreys, Elizabeth M. Mov Ecol Methodology The risk posed by offshore wind farms to seabirds through collisions with turbine blades is greatly influenced by species-specific flight behaviour. Bird-borne telemetry devices may provide improved measurement of aspects of bird behaviour, notably individual and behaviour specific flight heights. However, use of data from devices that use the GPS or barometric altimeters in the gathering of flight height data is nevertheless constrained by a current lack of understanding of the error and calibration of these methods. Uncertainty remains regarding the degree to which errors associated with these methods can affect recorded flight heights, which may in turn have a significant influence on estimates of collision risk produced by Collision Risk Models (CRMs), which incorporate flight height distribution as an input. Using GPS/barometric altimeter tagged Lesser Black-backed Gulls Larus fuscus from two breeding colonies in the UK, we examine comparative flight heights produced by these devices, and their associated errors. We present a novel method of calibrating barometric altimeters using behaviour characterised from GPS data and open-source modelled atmospheric pressure. We examine the magnitude of difference between offshore flight heights produced from GPS and altimeters, comparing these measurements across sampling schedules, colonies, and years. We found flight heights produced from altimeter data to be significantly, although not consistently, higher than those produced from GPS data. This relationship was sustained across differing sampling schedules of five minutes and of 10 s, and between study colonies. We found the magnitude of difference between GPS and altimeter derived flight heights to also vary between individuals, potentially related to the robustness of calibration factors used. Collision estimates for theoretical wind farms were consequently significantly higher when using flight height distributions generated from barometric altimeters. Improving confidence in telemetry-obtained flight height distributions, which may then be applied to CRMs, requires sources of errors in these measurements to be identified. Our study improves knowledge of the calibration processes for flight height measurements based on telemetry data, with the aim of increasing confidence in their use in future assessments of collision risk and reducing the uncertainty over predicted mortality associated with wind farms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40462-023-00431-z. BioMed Central 2023-10-21 /pmc/articles/PMC10590026/ /pubmed/37865783 http://dx.doi.org/10.1186/s40462-023-00431-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Methodology
Johnston, Daniel T.
Thaxter, Chris B.
Boersch-Supan, Philipp H.
Davies, Jacob G.
Clewley, Gary D.
Green, Ros M. W.
Shamoun-Baranes, Judy
Cook, Aonghais S. C. P.
Burton, Niall H. K.
Humphreys, Elizabeth M.
Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus
title Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus
title_full Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus
title_fullStr Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus
title_full_unstemmed Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus
title_short Flight heights obtained from GPS versus altimeters influence estimates of collision risk with offshore wind turbines in Lesser Black-backed Gulls Larus fuscus
title_sort flight heights obtained from gps versus altimeters influence estimates of collision risk with offshore wind turbines in lesser black-backed gulls larus fuscus
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590026/
https://www.ncbi.nlm.nih.gov/pubmed/37865783
http://dx.doi.org/10.1186/s40462-023-00431-z
work_keys_str_mv AT johnstondanielt flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT thaxterchrisb flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT boerschsupanphilipph flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT daviesjacobg flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT clewleygaryd flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT greenrosmw flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT shamounbaranesjudy flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT cookaonghaisscp flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT burtonniallhk flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus
AT humphreyselizabethm flightheightsobtainedfromgpsversusaltimetersinfluenceestimatesofcollisionriskwithoffshorewindturbinesinlesserblackbackedgullslarusfuscus