Cargando…
Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows
Recent advances in computer-aided diagnosis, treatment response and prognosis in radiomics and deep learning challenge radiology with requirements for world-wide methodological standards for labeling, preprocessing and image acquisition protocols. The adoption of these standards in the clinical work...
Autores principales: | Cobo, Miriam, Menéndez Fernández-Miranda, Pablo, Bastarrika, Gorka, Lloret Iglesias, Lara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590396/ https://www.ncbi.nlm.nih.gov/pubmed/37865635 http://dx.doi.org/10.1038/s41597-023-02641-x |
Ejemplares similares
-
Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics
por: Fang, Mengjie, et al.
Publicado: (2022) -
Radiomics and Deep Learning from Research to Clinical Workflow: Neuro-Oncologic Imaging
por: Park, Ji Eun, et al.
Publicado: (2020) -
A primer on deep learning and convolutional neural networks for clinicians
por: Iglesias, Lara Lloret, et al.
Publicado: (2021) -
Novel deep learning method for coronary artery tortuosity detection through coronary angiography
por: Cobo, Miriam, et al.
Publicado: (2023) -
Deep learning shapes single-cell data analysis
por: Ma, Qin, et al.
Publicado: (2022)