Cargando…
Soli-enabled noncontact heart rate detection for sleep and meditation tracking
Heart rate (HR) is a crucial physiological signal that can be used to monitor health and fitness. Traditional methods for measuring HR require wearable devices, which can be inconvenient or uncomfortable, especially during sleep and meditation. Noncontact HR detection methods employing microwave rad...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590449/ https://www.ncbi.nlm.nih.gov/pubmed/37865634 http://dx.doi.org/10.1038/s41598-023-44714-2 |
_version_ | 1785123991735762944 |
---|---|
author | Xu, Luzhou Lien, Jaime Li, Haiguang Gillian, Nicholas Nongpiur, Rajeev Li, Jihan Zhang, Qian Cui, Jian Jorgensen, David Bernstein, Adam Bedal, Lauren Hayashi, Eiji Yamanaka, Jin Lee, Alex Wang, Jian Shin, D Poupyrev, Ivan Thormundsson, Trausti Pathak, Anupam Patel, Shwetak |
author_facet | Xu, Luzhou Lien, Jaime Li, Haiguang Gillian, Nicholas Nongpiur, Rajeev Li, Jihan Zhang, Qian Cui, Jian Jorgensen, David Bernstein, Adam Bedal, Lauren Hayashi, Eiji Yamanaka, Jin Lee, Alex Wang, Jian Shin, D Poupyrev, Ivan Thormundsson, Trausti Pathak, Anupam Patel, Shwetak |
author_sort | Xu, Luzhou |
collection | PubMed |
description | Heart rate (HR) is a crucial physiological signal that can be used to monitor health and fitness. Traditional methods for measuring HR require wearable devices, which can be inconvenient or uncomfortable, especially during sleep and meditation. Noncontact HR detection methods employing microwave radar can be a promising alternative. However, the existing approaches in the literature usually use high-gain antennas and require the sensor to face the user’s chest or back, making them difficult to integrate into a portable device and unsuitable for sleep and meditation tracking applications. This study presents a novel approach for noncontact HR detection using a miniaturized Soli radar chip embedded in a portable device (Google Nest Hub). The chip has a [Formula: see text] dimension and can be easily integrated into various devices. The proposed approach utilizes advanced signal processing and machine learning techniques to extract HRs from radar signals. The approach is validated on a sleep dataset (62 users, 498 h) and a meditation dataset (114 users, 1131 min). The approach achieves a mean absolute error (MAE) of 1.69 bpm and a mean absolute percentage error (MAPE) of [Formula: see text] on the sleep dataset. On the meditation dataset, the approach achieves an MAE of 1.05 bpm and a MAPE of [Formula: see text] . The recall rates for the two datasets are [Formula: see text] and [Formula: see text] , respectively. This study represents the first application of the noncontact HR detection technology to sleep and meditation tracking, offering a promising alternative to wearable devices for HR monitoring during sleep and meditation. |
format | Online Article Text |
id | pubmed-10590449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105904492023-10-23 Soli-enabled noncontact heart rate detection for sleep and meditation tracking Xu, Luzhou Lien, Jaime Li, Haiguang Gillian, Nicholas Nongpiur, Rajeev Li, Jihan Zhang, Qian Cui, Jian Jorgensen, David Bernstein, Adam Bedal, Lauren Hayashi, Eiji Yamanaka, Jin Lee, Alex Wang, Jian Shin, D Poupyrev, Ivan Thormundsson, Trausti Pathak, Anupam Patel, Shwetak Sci Rep Article Heart rate (HR) is a crucial physiological signal that can be used to monitor health and fitness. Traditional methods for measuring HR require wearable devices, which can be inconvenient or uncomfortable, especially during sleep and meditation. Noncontact HR detection methods employing microwave radar can be a promising alternative. However, the existing approaches in the literature usually use high-gain antennas and require the sensor to face the user’s chest or back, making them difficult to integrate into a portable device and unsuitable for sleep and meditation tracking applications. This study presents a novel approach for noncontact HR detection using a miniaturized Soli radar chip embedded in a portable device (Google Nest Hub). The chip has a [Formula: see text] dimension and can be easily integrated into various devices. The proposed approach utilizes advanced signal processing and machine learning techniques to extract HRs from radar signals. The approach is validated on a sleep dataset (62 users, 498 h) and a meditation dataset (114 users, 1131 min). The approach achieves a mean absolute error (MAE) of 1.69 bpm and a mean absolute percentage error (MAPE) of [Formula: see text] on the sleep dataset. On the meditation dataset, the approach achieves an MAE of 1.05 bpm and a MAPE of [Formula: see text] . The recall rates for the two datasets are [Formula: see text] and [Formula: see text] , respectively. This study represents the first application of the noncontact HR detection technology to sleep and meditation tracking, offering a promising alternative to wearable devices for HR monitoring during sleep and meditation. Nature Publishing Group UK 2023-10-21 /pmc/articles/PMC10590449/ /pubmed/37865634 http://dx.doi.org/10.1038/s41598-023-44714-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Xu, Luzhou Lien, Jaime Li, Haiguang Gillian, Nicholas Nongpiur, Rajeev Li, Jihan Zhang, Qian Cui, Jian Jorgensen, David Bernstein, Adam Bedal, Lauren Hayashi, Eiji Yamanaka, Jin Lee, Alex Wang, Jian Shin, D Poupyrev, Ivan Thormundsson, Trausti Pathak, Anupam Patel, Shwetak Soli-enabled noncontact heart rate detection for sleep and meditation tracking |
title | Soli-enabled noncontact heart rate detection for sleep and meditation tracking |
title_full | Soli-enabled noncontact heart rate detection for sleep and meditation tracking |
title_fullStr | Soli-enabled noncontact heart rate detection for sleep and meditation tracking |
title_full_unstemmed | Soli-enabled noncontact heart rate detection for sleep and meditation tracking |
title_short | Soli-enabled noncontact heart rate detection for sleep and meditation tracking |
title_sort | soli-enabled noncontact heart rate detection for sleep and meditation tracking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590449/ https://www.ncbi.nlm.nih.gov/pubmed/37865634 http://dx.doi.org/10.1038/s41598-023-44714-2 |
work_keys_str_mv | AT xuluzhou solienablednoncontactheartratedetectionforsleepandmeditationtracking AT lienjaime solienablednoncontactheartratedetectionforsleepandmeditationtracking AT lihaiguang solienablednoncontactheartratedetectionforsleepandmeditationtracking AT gilliannicholas solienablednoncontactheartratedetectionforsleepandmeditationtracking AT nongpiurrajeev solienablednoncontactheartratedetectionforsleepandmeditationtracking AT lijihan solienablednoncontactheartratedetectionforsleepandmeditationtracking AT zhangqian solienablednoncontactheartratedetectionforsleepandmeditationtracking AT cuijian solienablednoncontactheartratedetectionforsleepandmeditationtracking AT jorgensendavid solienablednoncontactheartratedetectionforsleepandmeditationtracking AT bernsteinadam solienablednoncontactheartratedetectionforsleepandmeditationtracking AT bedallauren solienablednoncontactheartratedetectionforsleepandmeditationtracking AT hayashieiji solienablednoncontactheartratedetectionforsleepandmeditationtracking AT yamanakajin solienablednoncontactheartratedetectionforsleepandmeditationtracking AT leealex solienablednoncontactheartratedetectionforsleepandmeditationtracking AT wangjian solienablednoncontactheartratedetectionforsleepandmeditationtracking AT shind solienablednoncontactheartratedetectionforsleepandmeditationtracking AT poupyrevivan solienablednoncontactheartratedetectionforsleepandmeditationtracking AT thormundssontrausti solienablednoncontactheartratedetectionforsleepandmeditationtracking AT pathakanupam solienablednoncontactheartratedetectionforsleepandmeditationtracking AT patelshwetak solienablednoncontactheartratedetectionforsleepandmeditationtracking |