Cargando…
The mechanical and clinical influences of prosthetic index structure in Morse taper implant-abutment connection: a scoping review
AIM: The implant-abutment connection is a crucial factor in determining the long-term stability of dental implants. The use of a prosthetic index structure in the Morse taper implant-abutment connection has been proposed as a potential solution to improve the accuracy of this connection. This study...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590505/ https://www.ncbi.nlm.nih.gov/pubmed/37865734 http://dx.doi.org/10.1186/s12903-023-03545-3 |
Sumario: | AIM: The implant-abutment connection is a crucial factor in determining the long-term stability of dental implants. The use of a prosthetic index structure in the Morse taper implant-abutment connection has been proposed as a potential solution to improve the accuracy of this connection. This study aimed to provide a scoping review of the mechanical and clinical effects of the prosthetic index structure in the Morse taper implant-abutment connection. METHODS: A systematic scoping review of articles related to "dental implants," "Morse taper," and "index" was conducted using PubMed/MEDLINE, Web of Science, Cochrane, and Scopus databases, as well as a comprehensive literature search by two independent reviewers. Relevant articles were selected for analysis and discussion, with a specific focus on investigating the impact of prosthetic index structure on the mechanical and clinical aspects of Morse taper implant-abutment connections. RESULTS: Finally, a total of 16 articles that met the inclusion criteria were included for data extraction and review. In vitro studies have demonstrated that the use of a prosthetic index structure in the Morse taper implant-abutment connection can affect stress distribution, biomechanical stability, and reverse torque values, which may reduce stress within cancellous bone and help limit crestal bone resorption. However, retrospective clinical studies have shown that this structure is also associated with a higher risk of mechanical complications, such as abutment fracture and abutment screw loosening. CONCLUSIONS: Therefore, the clinical trade-off between preventing crestal bone resorption and mechanical complications must be carefully considered when selecting appropriate abutments. The findings suggest that this structure can improve the accuracy and stability of the implant-abutment connection, but its use should be carefully evaluated in clinical practice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-023-03545-3. |
---|