Cargando…
PHACTR1 promotes the mobility of papillary thyroid carcinoma cells by inducing F-actin formation
Papillary thyroid carcinoma (PTC) limits effective biomarkers for predicting prognosis and targeted therapy. Phosphatase and actin regulator 1 (PHACTR1) is a mobility-promoting molecule due to its regulation on F-actin formation, which is valuable for the investigation of PTC. Our study aimed to inv...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590795/ https://www.ncbi.nlm.nih.gov/pubmed/37876444 http://dx.doi.org/10.1016/j.heliyon.2023.e20461 |
Sumario: | Papillary thyroid carcinoma (PTC) limits effective biomarkers for predicting prognosis and targeted therapy. Phosphatase and actin regulator 1 (PHACTR1) is a mobility-promoting molecule due to its regulation on F-actin formation, which is valuable for the investigation of PTC. Our study aimed to investigate the relationship between PHACTR1 and PTC carcinogenesis, especially mobility. Our results displayed that PHACTR1 expression was elevated in metastatic or larger PTC tissues. In addition, PTC cells K1 with more obvious mobility had higher PHACTR1 expression whereas weakly mobile cells TPC-1 was contrary. Moreover, PHACTR1 silencing inhibited the invasion, migration and tumorigenicity of K1 cells, while PHACTR1 overexpression promoted the invasion, migration and tumorigenicity in TPC-1 cells. Furthermore, PHACTR1 overexpression increased the fluorescent intensity of F-actin in TPC-1 cells. Importantly, the enhanced invasion and migration in TPC-1 cells caused by PHACTR1 overexpression were significantly reversed by the disruption of F-actin assembly with swinholide A. In conclusion, PHACTR1 can promote the mobility of PTC cells, which results in the carcinogenesis of PTC. PHACTR1-regulated F-actin formation determines the mobility of PTC cells. Therefore, PHACTR1 can function as a potential biomarker for predicting prognosis and targeting therapy in PTC. |
---|