Cargando…

A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images

Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Lei, Sun, Tianyang, Liu, Xi, Cao, Zehong, Liu, Yan, Chen, Hong, Ma, Yixin, Zhang, Jun, Zou, Yaping, Liu, Yingchao, Shi, Feng, Shen, Dinggang, Wu, Jinsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590813/
https://www.ncbi.nlm.nih.gov/pubmed/37876818
http://dx.doi.org/10.1016/j.isci.2023.108041
_version_ 1785124076363186176
author Jin, Lei
Sun, Tianyang
Liu, Xi
Cao, Zehong
Liu, Yan
Chen, Hong
Ma, Yixin
Zhang, Jun
Zou, Yaping
Liu, Yingchao
Shi, Feng
Shen, Dinggang
Wu, Jinsong
author_facet Jin, Lei
Sun, Tianyang
Liu, Xi
Cao, Zehong
Liu, Yan
Chen, Hong
Ma, Yixin
Zhang, Jun
Zou, Yaping
Liu, Yingchao
Shi, Feng
Shen, Dinggang
Wu, Jinsong
author_sort Jin, Lei
collection PubMed
description Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which 456 were used for model training, 150 for internal validation, and 127 for multi-center testing. The study includes 5 types of common gliomas. A subtask-guided multi-instance learning image-to-label training pipeline was employed. The pipeline leveraged “patch prompting” for the model to converge with reasonable computational cost. Experiments showed that an overall accuracy of 0.79 in the internal validation dataset. The performance on the multi-center testing dataset showed an overall accuracy to 0.73. The findings suggest a minor yet acceptable performance decrease in multi-center data, demonstrating the model’s strong generalizability and establishing a robust foundation for future clinical applications.
format Online
Article
Text
id pubmed-10590813
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105908132023-10-24 A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images Jin, Lei Sun, Tianyang Liu, Xi Cao, Zehong Liu, Yan Chen, Hong Ma, Yixin Zhang, Jun Zou, Yaping Liu, Yingchao Shi, Feng Shen, Dinggang Wu, Jinsong iScience Article Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which 456 were used for model training, 150 for internal validation, and 127 for multi-center testing. The study includes 5 types of common gliomas. A subtask-guided multi-instance learning image-to-label training pipeline was employed. The pipeline leveraged “patch prompting” for the model to converge with reasonable computational cost. Experiments showed that an overall accuracy of 0.79 in the internal validation dataset. The performance on the multi-center testing dataset showed an overall accuracy to 0.73. The findings suggest a minor yet acceptable performance decrease in multi-center data, demonstrating the model’s strong generalizability and establishing a robust foundation for future clinical applications. Elsevier 2023-09-29 /pmc/articles/PMC10590813/ /pubmed/37876818 http://dx.doi.org/10.1016/j.isci.2023.108041 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Jin, Lei
Sun, Tianyang
Liu, Xi
Cao, Zehong
Liu, Yan
Chen, Hong
Ma, Yixin
Zhang, Jun
Zou, Yaping
Liu, Yingchao
Shi, Feng
Shen, Dinggang
Wu, Jinsong
A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
title A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
title_full A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
title_fullStr A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
title_full_unstemmed A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
title_short A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
title_sort multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590813/
https://www.ncbi.nlm.nih.gov/pubmed/37876818
http://dx.doi.org/10.1016/j.isci.2023.108041
work_keys_str_mv AT jinlei amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT suntianyang amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT liuxi amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT caozehong amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT liuyan amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT chenhong amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT mayixin amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT zhangjun amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT zouyaping amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT liuyingchao amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT shifeng amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT shendinggang amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT wujinsong amulticenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT jinlei multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT suntianyang multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT liuxi multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT caozehong multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT liuyan multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT chenhong multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT mayixin multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT zhangjun multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT zouyaping multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT liuyingchao multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT shifeng multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT shendinggang multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages
AT wujinsong multicenterperformanceassessmentforautomatedhistopathologicalclassificationandgradingofgliomausingwholeslideimages