Cargando…
Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches
The accurate prediction of phenotypes in microorganisms is a main challenge for systems biology. Genome-scale models (GEMs) are a widely used mathematical formalism for predicting metabolic fluxes using constraint-based modeling methods such as flux balance analysis (FBA). However, they require prio...
Autores principales: | Gonçalves, Daniel M., Henriques, Rui, Costa, Rafael S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590844/ https://www.ncbi.nlm.nih.gov/pubmed/37876626 http://dx.doi.org/10.1016/j.csbj.2023.10.002 |
Ejemplares similares
-
Precision Medicine: From “Omics” to Economics towards Data-Driven Healthcare - Time for European Transformation
por: Lacombe, Denis, et al.
Publicado: (2017) -
Moving metabolomics from a data-driven science to an integrative systems science
por: Reinke, Stacey N, et al.
Publicado: (2012) -
Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation
por: Bordbar, Aarash, et al.
Publicado: (2012) -
Data-driven assessment of dimension reduction quality for single-cell omics data
por: Dong, Xiaoru, et al.
Publicado: (2022) -
Ontology-driven integrative analysis of omics data through Onassis
por: Galeota, Eugenia, et al.
Publicado: (2020)