Cargando…

NCRD: A non-redundant comprehensive database for detecting antibiotic resistance genes

Antibiotic resistance genes (ARGs) are emerging pollutants present in various environments. Identifying ARGs has become a growing concern in recent years. Several databases, including the Antibiotic Resistance Genes Database (ARDB), Comprehensive Antibiotic Resistance Database (CARD), and Structured...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Yujie, Liu, Xiaohui, Zhang, Na, Wang, Zhi, Han, Maozhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590964/
https://www.ncbi.nlm.nih.gov/pubmed/37876810
http://dx.doi.org/10.1016/j.isci.2023.108141
Descripción
Sumario:Antibiotic resistance genes (ARGs) are emerging pollutants present in various environments. Identifying ARGs has become a growing concern in recent years. Several databases, including the Antibiotic Resistance Genes Database (ARDB), Comprehensive Antibiotic Resistance Database (CARD), and Structured Antibiotic Resistance Genes (SARG), have been applied to detect ARGs. However, these databases have limitations, which hinder the comprehensive profiling of ARGs in environmental samples. To address these issues, we constructed a non-redundant antibiotic resistance genes database (NRD) by consolidating sequences from ARDB, CARD, and SARG. We identified the homologous proteins of NRD from Non-redundant Protein Database (NR) and the Protein DataBank Database (PDB) and clustered them to establish a non-redundant comprehensive antibiotic resistance genes database (NCRD) with similarities of 100% (NCRD100) and 95% (NCRD95). To demonstrate the advantages of NCRD, we compared it with other databases by using metagenome datasets. Results revealed its strong ability in detecting potential ARGs.