Cargando…
Preparation of azachalcone derivatives vial-proline/ Et(3)N-catalyzed aldol condensation and study of their antioxidant potential
Chalcones, with two connected aromatic rings through an α,β-unsaturated carbonyl skeleton, display diverse biological roles like antimalarial, antibacterial, anticancer, and antioxidant activities. This research focuses on crafting azachalcone derivatives from 2-acetylpyridine and aromatic aldehydes...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590995/ https://www.ncbi.nlm.nih.gov/pubmed/37876829 http://dx.doi.org/10.1016/j.mex.2023.102427 |
Sumario: | Chalcones, with two connected aromatic rings through an α,β-unsaturated carbonyl skeleton, display diverse biological roles like antimalarial, antibacterial, anticancer, and antioxidant activities. This research focuses on crafting azachalcone derivatives from 2-acetylpyridine and aromatic aldehydes using l-proline/Et(3)N as a catalyst. Refinements encompass catalyst dosage, solvents, temperature, and post-reaction treatments. The optimized approach employs l-proline (0.15 equiv.)/ Et(3)N (0.30 equiv.) at room temperature in methanol. Derivatives are successfully synthesized in moderate to favorable yields, akin to sodium hydroxide as the benchmark catalyst. Notably, antioxidant assessment via the DPPH method spotlights compound 2b and 2d (100 ppm concentration), showcasing significant antioxidant potency with inhibition percentages of 92.22 % and 74.41 %, respectively. • l-proline/ Et(3)N is successful to use in aldol condensation reaction. • Azachalcones based 2-acetylpyridine were successfully synthesized using the catalyst. • Azachalcones showed antioxidant activity against DPPH radical. |
---|