Cargando…
Nonlinear independent component analysis for principled disentanglement in unsupervised deep learning
A central problem in unsupervised deep learning is how to find useful representations of high-dimensional data, sometimes called “disentanglement.” Most approaches are heuristic and lack a proper theoretical foundation. In linear representation learning, independent component analysis (ICA) has been...
Autores principales: | Hyvärinen, Aapo, Khemakhem, Ilyes, Morioka, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591132/ https://www.ncbi.nlm.nih.gov/pubmed/37876900 http://dx.doi.org/10.1016/j.patter.2023.100844 |
Ejemplares similares
-
Independent component analysis: recent advances
por: Hyvärinen, Aapo
Publicado: (2013) -
Testing Independent Component Patterns by Inter-Subject or Inter-Session Consistency
por: Hyvärinen, Aapo, et al.
Publicado: (2013) -
Unsupervised Learning of Disentangled Representation via Auto-Encoding: A Survey
por: Eddahmani, Ikram, et al.
Publicado: (2023) -
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
por: Higgins, Irina, et al.
Publicado: (2021) -
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
por: Zuo, Lianrui, et al.
Publicado: (2021)